FORECASTING PRICES OF FERTILIZER RAW MATERIALS USING LONG SHORT TERM MEMORY

  • Eliansion Ivan Informatika, Fakultas Teknologi, Universitas Kristen Satya Wacana, Indonesia
  • Hindriyanto Dwi Purnomo Informatika, Fakultas Teknologi, Universitas Kristen Satya Wacana, Indonesia
Keywords: Fertilizer Raw Materials, Forecasting, LSTM

Abstract

This study uses long short term memory (LSTM) modeling to predict time series data on the price of fertilizer raw materials, namely prilled urea, granular urea, ammonium sulphate((NH4)2SO4), ammonia (NH3), diammonium phosphate((NH4)2HPO4 ), phosphoric acid (H3PO4), phosphate rock (P2O5), NPK 16-16-16, potash, sulfur, and sulfuric acid (H2SO4). Predictions are made based on data that existed in the past using the long short term memory method, which is a derivative of the recurrent neural network. Carry out the evaluation process by looking at the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the model that has been created. The results obtained are quite good, as seen from the root mean square error (RMSE) and mean absolute percentage error (MAPE) which are close to 0 and not too high. Sulfur raw material got the smallest root mean square error (RMSE) with a score of 0.053 and diammonium phosphate raw material got the smallest mean absolute percentage error (MAPE) evaluation value with 2.3%, while the largest value was for the root mean square error (RMSE) of raw materials. Phosphoric acid fertilizer raw material with a value of 22,979 and the largest mean absolute percentage error (MAPE) comes from sulfuric acid fertilizer raw material with a value of 9.180%.

Downloads

Download data is not yet available.

References

B. Lécuyer, V. Chatellier, and K. Daniel, “Analysis of price volatility of mineral fertilisers: Possible issues for European farmers,” Int. J. Agric. Resour. Gov. Ecol., vol. 10, no. 4, pp. 344–361, 2014, doi: 10.1504/IJARGE.2014.066255.

D. S. Irawan and S. Rochayati, “Proyeksi kebutuhan pupuk sektor pertanian melalui pendekatan sistem dinamis,” Bogor, Balai Penelit. Tanah, no. 12, pp. 123–139, 2017, [Online]. Available: https://www.academia.edu/download/34465994/09_-_Irawan_et_al_-_Proyeksi_Kebutuhan_Pupuk_Sektor_Pertanian_Melalui_Pendekatan_Sistem_Dinamis.pdf.

D. R. Indah and E. Rahmadani, “Sistem Forecasting Perencanaan Produksi dengan Metode Single Eksponensial Smoothing pada Keripik Singkong Srikandi Di Kota Langsa,” J. Penelit. Ekon. Akutansi, vol. 2, no. 1, pp. 10–18, 2018.

P. Sugiartawan, A. A. Jiwa Permana, and P. I. Prakoso, “Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory (LSTM),” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 43–52, 2018, doi: 10.33173/jsikti.5.

P. Sugiartawan, R. Pulungan, and A. Kartika, “Prediction by a Hybrid of Wavelet Transform and Long-Short-Term-Memory Neural Network,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 2, 2017, doi: 10.14569/ijacsa.2017.080243.

T. Thireou and M. Reczko, “Bidirectional Long Short-Term Memory Networks for Predicting the Subcellular Localization of Eukaryotic Proteins,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 4, no. 3, pp. 441–446, 2007, doi: 10.1109/TCBB.2007.1015.

T. Zhang, Y. Liu, Z. Cui, J. Leng, W. Xie, and L. Zhang, “Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network,” Int. Conf. Comput., vol. 11538, no. May, pp. 648–657, 2019, doi: 10.1007/978-3-030-22744-9.

D. M. Q. Nelson, A. C. M. Pereira, and R. A. De Oliveira, “Stock market’s price movement prediction with LSTM neural networks,” Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, no. May, pp. 1419–1426, 2017, doi: 10.1109/IJCNN.2017.7966019.

Q. A. Aini and M. Prof. Dr. Ir. Suparno, “Pengendalian Persediaan Bahan Baku Raw Material Inventory Control of,” 2016.

S. R. Riady and T. W. Sen, “Prediction of Electrical Energy Consumption Using LSTM Algorithm with Teacher Forcing Technique,” JISA(Jurnal Inform. dan Sains), vol. 4, no. 1, pp. 90–95, 2021, doi: 10.31326/jisa.v4i1.904.

A. Khumaidi, R. Raafi’udin, and I. P. Solihin, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” J. Telemat., vol. 15, no. 1, pp. 13–18, 2020, [Online]. Available: https://journal.ithb.ac.id/telematika/article/view/340.

D. Hawkins, “The Problem of Overfitting,” J. Chem. Inf. Comput. Sci., vol. 44, pp. 1–12, May 2004, doi: 10.1021/ci0342472.

A. Davydenko and R. Fildes, “Forecast error measures : Critical review and practical recommendations,” Bus. Forecast. Pract. Probl. Solut., no. January, pp. 1–12, 2016, doi: 10.13140/RG.2.1.4539.5281.

S. Ramayani and M. Iqbal, “FORECASTING OF FERTILIZER INVENTORY IN UD . MENARA TANI WITH WEIGHTED MOVING AVERAGE ( WMA ) AND DOUBLE EXPONENTIAL SMOOTHING ( DES ) METHOD PERAMALAN PERSEDIAAN PUPUK PADA UD . MENARA TANI DENGAN METODE WEIGHTED MOVING AVERAGE ( WMA ) DAN DOUBLE EXPONENTIAL SMOOTHING ( DES ),” vol. 3, no. 3, 2022.

M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average Dan Exponential Smoothing Untuk Sistem Peramalan Pendapatan Pada Perusahaan XYZ,” J. Sist. dan Inform., vol. 13, no. 2, pp. 36–45, 2019

Published
2022-12-26
How to Cite
[1]
E. Ivan and H. D. Purnomo, “FORECASTING PRICES OF FERTILIZER RAW MATERIALS USING LONG SHORT TERM MEMORY”, J. Tek. Inform. (JUTIF), vol. 3, no. 6, pp. 1663-1673, Dec. 2022.