ANALYSIS OF SENTIMENT OF INDONESIAN COMMUNITY ON METAVERSE USING SUPPORT VECTOR MACHINE ALGORITHM
Abstract
Metaverse was widely discussed right on October 28, 2021, when Mark Zuckerberg announced the company name change from Facebook to Meta. Regarding the sophisticated Metaverse concept, it is possible to make the pros and cons between the Indonesian people. This information is widely distributed in various media crews, one of which is Twitter social media. Tweets from social media can be used to obtain data and information as material for research on sentiment analysis. This study aims to determine the response of the Indonesian people to the Metaverse. Material data was obtained from Twitter tweets with keywords or Metaverse queries. Research conducted by the Support Vector Machine Algorithm in research with TF-IDF word weighting, the tests carried out with the results of the class division of positive sentiment 70.69%, neutral 15.85%, negative 13.46% will produce values of accuracy, precision, recall, and f1-score. They use various data, namely, 90% training data and 10% test data. The result is high accuracy in testing many data, 2504 data, and the accuracy value is 81%, with an average value of 79% precision, 63% recall, and 57% f1-score.
Downloads
References
w. purbo Onno, Text mining analisis medsos kekuatan brand & intelejen di internet, 1st ed. yogyakarta: andi (anggota IKAPI), 2019.
J. López-Díez, “Metaverse: Year One. Mark Zuckerberg’s video keynote on Meta (October 2021) in the context of previous and prospective studies on metaverses,” Pensar Public., vol. 15, pp. 299–303, 2021.
K. Laeeq and E. Sciences, “Metaverse : Why , How and What,” 2022. https://www.researchgate.net/publication/358505001_Metaverse_Why_How_and_What (accessed Jun. 18, 2022).
Indrawan Nugroho, “Apa itu Corporate Metaverse?,” Corporate Innovation Consulting, 2022. https://www.cias.co/post/apa-itu-corporate-metaverse (accessed Jun. 06, 2022).
A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021, doi: 10.20884/1.jutif.2021.2.2.51.
A. R. Isnain et al., “SENTIMEN ANALISIS PUBLIK TERHADAP KEBIJAKAN LOCKDOWN PEMERINTAH JAKARTA MENGGUNAKAN ALGORITMA SVM,” Univ. Teknokr. Indones., vol. 2, no. 1, pp. 31–37, 2021.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” J. Ilm. Edutic Pendidik. dan Inform., vol. 7, no. 1, pp. 1–11, 2020.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
A. P. Natasuwarna, “Seleksi Fitur Support Vector Machine pada Analisis Sentimen Keberlanjutan Pembelajaran Daring,” Techno.Com, vol. 19, no. 4, pp. 437–448, 2020, doi: 10.33633/tc.v19i4.4044.
I. M. Agus, W. Putra, A. Susanto, and I. Soesanti, “Ekstraksi Garis Pantai Pada Citra Satelit Landsat dengan Metode Segmentasi dan Deteksi Tepi,” J. Nas. Pendidik. Tek. Inform., vol. 4, pp. 115–120, 2015.
A. R. Widangsa and A. R. Pratama, “Analisis Sentimen Kebijakan Pendidikan di Masa Pandemi COVID-19 dengan CrowdTangle di Facebook,” AUTOMATA, vol. 2, no. 2, 2021.
M. Priandi and Painem, “Analisis Sentimen Masyarakat Terhadap Pembelajaran Daring di Era Pandemi Covid-19 pada Media Sosial Twitter Menggunakan Ekstraksi Fitur Countvectorizer dan Algoritma K-Nearest Neighbor,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 311–319, 2021.
Y. T. Pratama, F. A. Bachtiar, and N. Y. Setiawan, “PARIWISATA PANTAI MALANG SELATAN MENGGUNAKAN TF-IDF DAN SUPPORT VECTOR MACHINE SKRIPSI memperoleh gelar Sarjana Komputer Disusun oleh : Yoga Tika Pratama,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, pp. 6244–6252, 2018.
N. L. W. S. R. Ginantra et al., Data mining dan penerapan algoritma. Yayasan Kita Menulis, 2021.
M. C. Kirana, N. P. Perkasa, M. Z. Lubis, and M. Fani, “Visualisasi Kualitas Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter,” J. Appl. Informatics Comput., vol. 3, no. 1, pp. 23–32, 2019, doi: 10.30871/jaic.v0i0.1246.
A. Gupta, P. Tyagi, T. Choudhury, and M. Shamoon, “Sentiment Analysis Using Support Vector Machine,” Proc. 4th Int. Conf. Contemp. Comput. Informatics, IC3I 2019, pp. 49–53, 2019, doi: 10.1109/IC3I46837.2019.9055645.
S. Gusriani, K. D. K. Wardhani, and M. I. Zul, “Analisis Sentimen Terhadap Toko Online di Sosial Media Menggunakan Metode Klasifikasi Naïve Bayes (Studi Kasus: Facebook Page BerryBenka),” 4th Appl. Bus. Eng. Conf., vol. 1, no. 1, pp. 1–7, 2016.
N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” Sistemasi, vol. 10, no. 1, p. 222, 2021, doi: 10.32520/stmsi.v10i1.1179.
N. Kirana, “Jangan Sampai Salah! Gunakan Grafik Sesuai Fungsinya,” 2021. http://www.thetastatistik.com/jangan-sampai-salah-gunakan-grafik-sesuai-fungsinya/#:~:text=Grafik Garis,turun dalam kurun waktu tertentu. (accessed Jul. 02, 2022).
L. X. Sistem Informasi, “9 JENIS CHART YANG DAPAT ANDA GUNAKAN UNTUK VISUALISASI DATA DALAM PRESENTASI ANDA,” 2021. https://lldikti12.ristekdikti.go.id/2021/09/01/9-jenis-chart-yang-dapat-anda-gunakan-untuk-visualisasi-data-dalam-presentasi-anda.html#:~:text=Diagram pie dapat digunakan untuk,komponen sebagai persentase dari total. (accessed Jul. 02, 2022).
KEVIN OLLA, “Belajar Machine Learning dalam Pengolahan Data, Ini Panduannya,” 2017. https://www.jagoanhosting.com/blog/belajar-machine-learning-dalam-pengolahan-data-ini-panduannya/ (accessed Jul. 02, 2022).
Copyright (c) 2022 siti sumayah
This work is licensed under a Creative Commons Attribution 4.0 International License.