SMARTPHONE RECOMMENDATION SYSTEM USING MODEL-BASED COLLABORATIVE FILTERING METHOD
Abstract
Smartphone are now an importan item that is needed by many people. The rapid development of technology make smartphone companies are competing to release their best smartphones.The many smartphones in online shop cause user to become disoriented about their choice. A recommendation system can help the user in choosing the smartphone that the user likes. In this study, a recommendation system was made using the collaborative filtering method with the K-Nearest Neighbors algorithm and combined with the application of K-Means algorithm to divide the smartphone into several group. The output of collaborative filtering method is that the model can give smartphone rating predictions to user. The prediction results will be used as the basis for giving recommendations to user. The purpose of smartphones groupping is so that the recommendation results are more specific and accurate. The evaluation of the model gets an MAE value is 1.1047 and RMSE value is 1.7579. So it can be concluded that the development of a smartphone recommendation system was successfully implemented.
Downloads
References
M. Goyani and N. Chaurasiya, “A Review of Movie Recommendation System: Limitations, Survey and Challenges,” Electron. Lett. Comput. Vis. Image Anal., vol. 19, no. 3, pp. 18–37, 2020, doi: 10.5565/rev/elcvia.1232.
F. Trabelsi, A. Khtira, and B. El Asri, “Hybrid Recommendation Systems: A State of Art,” no. Enase, pp. 281–288, 2021, doi: 10.5220/0010452202810288.
I. W. Jepriana and S. Hanief, “ANALISIS DAN IMPLEMENTASI METODE ITEM-BASED COLLABORATIVE FILTERING UNTUK SISTEM REKOMENDASI KONSENTRASI DI STMIK STIKOM BALI,” J. JANAPATI (Jurnal Nas. Pendidik. Tek. Inform., vol. 9, no. 2, pp. 171–180, 2020, doi: 10.23887/janapati.v9i2.23218.
Hanafi, N. Suryana, and A. Basari, “Convolutional-NN and Word Embedding for Making an Effective Product Recommendation Based on Enhanced Contextual Understanding of a Product Review,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 3, pp. 1063–1070, 2019, doi: 10.18517/ijaseit.9.3.8843.
B. Patel, P. Desai, and U. Panchal, “Methods of recommender system: A review,” Proc. 2017 Int. Conf. Innov. Information, Embed. Commun. Syst. ICIIECS 2017, vol. 2018-Janua, pp. 1–4, 2018, doi: 10.1109/ICIIECS.2017.8275856.
M. Johari and A. Laksito, “The Hybrid Recommender System of the Indonesian Online Market Products using IMDb weight rating and TF-IDF,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 977–983, 2021, doi: 10.29207/resti.v5i5.3486.
J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning,” Artif. Intell. Rev., vol. 50, no. 1, pp. 21–48, 2018, doi: 10.1007/s10462-017-9539-5.
F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Informatics J., vol. 16, no. 3, pp. 261–273, 2015, doi: 10.1016/j.eij.2015.06.005.
Rohit and A. K. Singh, “Accuracy enhancement of collaborative filtering recommender system for blogs using latent semantic indexing,” 2017 Conf. Inf. Commun. Technol. CICT 2017, vol. 2018-April, pp. 1–4, 2018, doi: 10.1109/INFOCOMTECH.2017.8340646.
R. D. Syah, “Performa Algoritma User K-Nearest Neighbors pada Sistem Rekomendasi di Tokopedia,” J. Inform. Univ. Pamulang, vol. 5, no. 3, p. 302, 2020, doi: 10.32493/informatika.v5i3.6312.
D. P. D. Rajendran and R. P. Sundarraj, “Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100027, 2021, doi: 10.1016/j.jjimei.2021.100027.
C. S. D. Prasetya, “Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, p. 194, 2017, doi: 10.25126/jtiik.201743392.
R. Baruri, A. Ghosh, R. Banerjee, A. Das, A. Mandal, and T. Halder, “An Empirical Evaluation of k-Means Clustering Technique and Comparison,” Proc. Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019, pp. 470–475, 2019, doi: 10.1109/COMITCon.2019.8862215.
H. Hairani, D. Susilowati, I. Puji Lestari, K. Marzuki, and L. Z. A. Mardedi, “Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 275–282, 2022, doi: 10.30812/matrik.v21i2.1542.
F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru,” Sistemasi, vol. 7, no. 3, p. 238, 2018, doi: 10.32520/stmsi.v7i3.388.
D. Murni, B. Efendi, and N. Rahmadani, “IMPLEMENTATION OF EMPLOYEE DISCIPLINE CLUSTERING AT GOTTING SIDODADI VILLAGE OFFICE BANDAR PASIR MANDOGE USING K-MEANS ALGORITHM,” J. Tek. Inform., vol. 3, no. 2, pp. 295–304, 2022, doi: 10.20884/1.jutif.2022.3.2.236.
M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, “Evaluating Collaborative Filtering Recommender Algorithms: A Survey,” IEEE Access, vol. 6, pp. 74003–74024, 2018, doi: 10.1109/ACCESS.2018.2883742.
K. Liao, “prototyping-a-recommender-system-step-by-step-part-1-knn-item-based-collaborative-filtering-637969614ea @ towardsdatascience.com.” [Online]. Available: https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-1-knn-item-based-collaborative-filtering-637969614ea (accessed May.12, 2022)
D. K. B, M. D. Ekstrand, and J. A. Konstan, Social Information Access, vol. 10100. Springer International Publishing, 2018. doi: 10.1007/978-3-319-90092-6.
C. Wibisono, L. S. Haryadi, J. E. Widyaya, and S. L. Liliawati, “Sistem Rekomendasi Suku Cadang Berdasarkan Item Based Filtering,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 10–19, 2021, doi: 10.28932/jutisi.v7i1.3036.
M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.
Copyright (c) 2022 Fajar Aji Prayoga, Kusnawi Kusnawi
This work is licensed under a Creative Commons Attribution 4.0 International License.