IDENTIFICATION OF MENTAL ILNESS FROM PATIENT DISEASES USING KNN AND LEVENSHTEIN DISTANCE ALGORITHM
Abstract
According to WHO, in 2017, the estimated number of people with mental disorders worldwide was around 450 million people, including schizophrenia. Globally, for the condition of Southeast Asia alone, the number of people affected by mental disorders is 13.5%. Meanwhile, 13.4% of cases in Indonesia are affected by mental illness. The Association of Mental Medicine Specialists (PDSKJ) during October 2020 noted that 5661 people who did self-examination through the PDSKJ website came from 31 provinces and found that 32% of the population had psychological problems and 68% had no psychological issues. Seeing that the level of mental illness in Indonesia is increasing, it is necessary to have a system to help the community with early prevention and treatment. With the growth of technology at its peak, Machine Learning technology can overcome the problem which is part of artificial intelligence. Furthermore, machine learning has an important role in improving the quality of health services because it is able to provide a medical diagnosis to predict disease. Therefore, the authors conducted a study to create a system to identify mental illness using the TF-IDF method. This method calculates the word weighting from a collection of complaints that the user gives. Then, these complaints will be classified using the KNN algorithm classification method and the Levenshtein Distance method to find the distance between the word inputted by the user and the word in the database and then calculate the number of differences between the two strings in the form of a matrix. The accuracy result of this machine learning classification is 0.928 or 93%, and will be visualized through web-based software using the Flask framework.
Downloads
References
Fakhriyani Diana Vidya, kesehatan mental. 1st ed. Jawa timur: CV. Duta Media, 2017.
F. A. Saputra, Y. Y. Ranimpi, and R. T. Pilakoannu, “Kesehatan Mental dan Koping Strategi di Kudangan, Kecamatan Delang, Kabupaten Lamandau Kalimantan Tengah: Suatu Studi Sosiodemograf,” Humanit. (Jurnal Psikologi), vol. 2, no. 1, pp. 63–74, 2018, doi: 10.28932/humanitas.v2i1.1046.
Indrayani yoeyoen aryantin, Situasi Kesehatan Jiwa di Indonesia. 1st ed. Jakarta: kemkes.go.id, 2019.
B. A. Fundrika. (2020, Oct 14). “Persen Masyarakat Indonesia Alami Masalah Gangguan Jiwa Selama Pandemi[Online]”. Available : https://www.suara.com/health/2020/10/14/171948/68-persen-masyarakat-indonesia-alami-masalah-gangguan-jiwa-selama-pandemi.
N. Aziz, “Implementasi algoritma knn untuk memprediksi potensi penyakit jantung dengan python flask,” Skripsi Teknik Informatika. Fakultas Komunikasi dan Informatika. Universitas Muhammadiyah Surakarta. Surakarta. Indonesia. 2021.
I. Sulistiani, E. Mufida, P. M. Yasser, and L. Alamsyah, “Systematic Literature Review : Bankruptcy Prediction Menggunakan Teknik Machine Learning dan Deep Learning,” Jurnal Intech. vol. 2, no. 1, pp. 13–18, 2021.
N. M. Putry, B. N. Sari, M. Kom, T. Informatika, and U. S. Karawang, “Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Melitus,” Jurnal Sains dan Manajemen. vol. 10, no. 1, pp.47-48, 2022.
H. T. Saidah, M. S. N. Ishlah, and N. N. Rokhmah, “Autocorrect pada Modul Pencarian Drugs e-Dictionary Menggunakan Levenshtein Distance,” Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 1, pp. 64–69, 2020.
I.Nur Irmasnyah, N.Chafid and Mujianto, “Penerapan Filter Kata Menggunakan Metode Stemming Pada Aplikasi Chatting Berbasis Web,” Webinar Nasional Cendikiawan. vol. 1, no. 1, pp. 1–9, 2020.
R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,” J. Tek. Elektro Univ. Negeri Semarang, vol. 9, no. 1, pp. 18–23, 2017, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/jte/article/download/10955/6659.
R. I. Saputri, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Untuk Klasifikasi Cyber Harassment Pada Twitter,” Skripsi Teknik Informatika. Fakultas Informatika. IT Telkom Purwokerto. Purwokerto. Indonesia. 2020.
A. Amrin and H. Saiyar, “Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes,” Jurikom, vol. vol.5, no. no.5, pp. 498–502, 2018.
D. S. Hormansyah and Y. P. Utama, “Aplikasi Chatbot Berbasis Web Pada Sistem Informasi Layanan Publik Kesehatan Di Malang Dengan Menggunakan Metode Tf-Idf,” J. Inform. Polinema, vol. 4, no. 3, p. 224, 2018, doi: 10.33795/jip.v4i3.211.
R. R. A. Siregar, F. A. Sinaga, and R. Arianto, “Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model,” Comput. J. Comput. Sci. Inf. Syst., vol. 1, no. 2, p. 171, 2017, doi: 10.24912/computatio.v1i2.1014.
Indrayani, D. Sugianti, and M. A. Al Karomi, “Optimasi Parameter K pada Algoritma K-Nearest Neighbour untuk Klasifikasi Penyakit Diabetes Mellitus,” Pros. SNATIF ke-6 Tahun 2019, no. 2007, pp. 96–101, 2019.
Copyright (c) 2022 yustika rahma
This work is licensed under a Creative Commons Attribution 4.0 International License.