CLASSIFICATION OF MEAT IMAGERY USING ARTIFICIAL NEURAL NETWORK METHOD AND TEXTURE FEATURE EXTRACTION BY GRAY LEVEL CO-OCCURRENCE MATRIX METHOD
Abstract
Lately, there is often a mixture of beef and pork done by traders to the general public as buyers. This is due to the unconsciousness of the buyer on how to recognize the type of meat purchased. The effect of this meat mix can certainly be detrimental to buyers, especially Muslims. Image processing is a general term for various methods in which it is used to manipulate and modify images in various ways. Classification is a method of grouping some information and ensuring it is listed in a class.. Classification of beef and pork differentiator in this application using Artificial Neural Network (ANN) method while for texture extraction using Gray Level Co-occurrence Matrix (GLCM) method. The information used in the examination was 30 images of fresh meat divided into 15 images of fresh beef and 15 images of fresh pork. The data used is data Classification of Beef and Pork Image based on Color and Texture Characteristics. The result of classification accuracy obtained in this application is 80%.
Downloads
References
A. Maulana, “Identifikasi Jenis Daging Menggunakan Image Processing Berbasis Android,” Universitas Lampung, 2018.
A. K. Jain, Fundamentals of Digital Image Processing. Davis: Prentice -Hall, inc., 1989.
E. N, “Digital Image Processing : A Particial Introduction Using Java,” The University of Michigan, Michigan, 2000.
I. G. R. A. Sugiartha, M. Sudarma, and I. M. O. Widyantara, “Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered-Based Retrieval of Images (CLUE),” Maj. Ilm. Teknol. Elektro, vol. 16, no. 1, p. 85, 2016, doi: 10.24843/mite.1601.12.
L. J. Havery, Sistem Informasi. Jakarta: Mata Satu, 2000.
S. Haykin, Neural Networks and Learning Machines, 3rd ed., vol. 3. Ontario: Library of Compress Catalog-In-Publication Data, 2008.
A. A. Kasim and A. Harjoko, “Klasifikasi Citra Batik Menggunakan Jaringan Syaraf Tiruan Berdasarkan Gray Level Co- Occurrence Matrices ( GLCM ),” Semin. Nas. Apl. Teknol. Inf. Yogyakarta, 21 Juni 2014, pp. 7–13, 2014.
W. Astuti, “Klasifikasi Citra Daging Sapi Dan Daging Babi Berdasarkan Ciri Warna Dan Tekstur,” Universitas Islam Negeri Sunan Kalijaga Yogyakarta, 2016.
M. M. Saleck, A. Elmoutaouakkil, and M. Moucouf, “Tumor detection in mammography images using fuzzy C-means and GLCM texture features,” Proc. - 2017 14th Int. Conf. Comput. Graph. Imaging Vis. CGiV 2017, pp. 122–125, 2018, doi: 10.1109/CGiV.2017.22.
R. Widodo, A. W. Widodo, and A. Supriyanto, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix ( GLCM ) Citra Buah Jeruk Keprok ( Citrus reticulata Blanco ) untuk Klasifikasi Mutu,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 5769–5776, 2018.
S. A. Wibowo, B. Hidayat, and U. Sunarya, “Simulasi dan Analisis Pengenalan Citra Daging Sapi dan Daging Babi dengan Metode GLCM dan KNN,” Semin. Nas. Inov. Dan Apl. Teknol. Di Ind. 2016, pp. 338–343, 2016.
R. Listia and A. Harjoko, “Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Cooccurence Matrix (GLCM),” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 8, no. 1, p. 59, 2014, doi: 10.22146/ijccs.3496.
B. Library, “Citra Grayscale,” Library.binus.ac.id, 2014. http://library.binus.ac.id/eColls/eThesisdoc/Bab2/2014-2-00288-SK Bab2001 (accesed Oktober. 20, 2019).
E. Isnianto, Hidayat N. Puspitaningrum, “Aplikasi Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk Klasifikasi Suara Jantung sebagai Alat Bantu Diagnosis Gangguan Jantung,” Seminar Nasional Teknologi Terapan - SNTT 2013, pp. 60-67, 2013.
N. Ginanto, “Electric Transient Analysis Program (ETAP) Short Circuit Analysis,” wordpress.com, 2012. https://novikaginanto.wordpress.com/2012/03/24/etap-electric-transient-analysis-program/ (accesed Oktober. 20, 2019).
R. R. P. Putri, M. T. Furqon, and B. Rahayudi, “Implementasi Metode JST-Backpropagation Untuk Klasifikasi Rumah Layak Huni,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3366–3372, 2018.
N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” Jurnal Teknik Informatika (Jutif), vol. 1, no. 2, pp. 61–68, 2020.
Copyright (c) 2021 Chairul Imam, Eka Wahyu Hidayat, Neng Ika Kurniati
This work is licensed under a Creative Commons Attribution 4.0 International License.