CLASSIFICATION OF FAMILY HOPE PROGRAM RECIPIENTS USING NAIVE BAYES AND C4.5 METHODS

  • Farras Ahmad Fauzi Informatics Engineering, Computer Science Faculty, Buana Perjuangan Karawang University, Indonesia
  • Tatang Rohana Informatics Engineering, Computer Science Faculty, Buana Perjuangan Karawang University, Indonesia
  • Ayu Ratna Juwita Informatics Engineering, Computer Science Faculty, Buana Perjuangan Karawang University, Indonesia
  • Deden Wahiddin Informatics Engineering, Computer Science Faculty, Buana Perjuangan Karawang University, Indonesia
Keywords: C4.5, Confusion Matrix, Classification, Naive Bayes, ROC Curve

Abstract

Receiving PKH assistance in Rawamerta District does not always go well, so there are people who are not entitled to receive assistance. This is because there is still no system that can facilitate the process of classifying PKH assistance recipients. The application of data mining can facilitate classification with high speed and accuracy. The purpose of this study is to classify PKH assistance recipients using the Naïve Bayes and C4.5 methods to determine the eligibility of PKH for people facing social welfare problems. The data used is PKH data in Rawamerta District, Karawang Regency in 2023, totaling 1834 data. The results of naive bayes accuracy of 98.89%, precision 98.25%, recall 98.51%, F1-score 98.89%, and AUC 1.00 are included in the excellent classification because they are in the range of 0.90-1.00, while the C4.5 algorithm produces Accuracy values ​​of 99.26%, Precision 99.25%, Recall 99.25%, F1-score 99.25% and AUC 0.99 are included in the excellent classification because they are in the range of 0.90-1.00. The C4.5 algorithm is superior to Naive Bayes, because the accuracy produced is higher.

Downloads

Download data is not yet available.

References

A. Triayudi, “Penerapan Data Mining Untuk Klasifikasi Penerima Dana Bantuan Sosial Dengan Menggunakan Algoritma K-Nearest Neighbor,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 2, Sep. 2023, doi: 10.47065/bits.v5i2.3972.

F. A. Lubis, N. Ahmadi, B. Rahmani, I. K. Putri, U. I. Negeri, and S. Utara, “Strategi Pemberdayaan Usaha Mikro Kecil Menengah (UMKM) Melalui Program Mekaar Oleh PT. PNM Kota Medan Perspektif Ekonomi Islam”.

A. Ramdani, C. D. Sofyan, F. Ramdani, M. F. A. Tama, and M. A. Rachmatsyah, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Masyarakat dalam Menerima Bantuan Sosial”, Jurnal Ilmiah Sistem Informasi, vol. 1, no. 2, pp. 39–47, 2022.

M. Eka, P. Sompie, A. Aminudin, and J. Yogopriyatno, “Analisis Peran Pendamping Sosial Program Keluarga Harapan (PKH) Di Kecamatan Sungai Serut,” Jurnal Multidisiplin Dehasen, vol. 1, no. 3, pp. 93–102, 2022.

J. Ilmu et al., “AKSARA: Jurnal Ilmu Pendidikan Nonformal 909,” vol. 09, no. 2, 2023, doi: 10.37905/aksara.9.2.909-922.2023.

N. Alfiah, “Klasifikasi Penerima Bantuan Sosial Program Keluarga Harapan Menggunakan Metode Naive Bayes,” Jurnal Teknologi Informasi, vol. 16, no. 1, 2021.

C. Cholifah, H. Hikmahyanti, and A. Ratna Juwita, “Analisis Sentimen Twitter Terhadap Omnibuslow Menggunakan Metode Support Vector Machine dan Naïve Bayes Classifier,” Jurnal Informatika Teknologi dan Sains, vol. 4, no. 4, 2022.

W. Hadikristanto and I. Nasai, “Penerapan Algoritma Genetika dalam Memprediksi Penerima Program Keluarga Harapan Dengan Metode Naive Bayes,” Jurnal Teknologi Pelita Bangsa, vol. 10, 2019.

I. Nurjanah, J. Karaman, I. Widaningrum, and D. Mustikasari, “Penggunaan Algoritma Naive Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa,” Journal of Computer Science and Information Technology E-ISSN, vol. 3, no. 2, 2023.

L. Firdaus and T. Setiadi, “Perbandingan Algoritma Naive Bayes, Decision Tree, dan KNN untuk Klasifikasi Produk Populer Adidas US dengan Confusion Matrix,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, p. 185, Dec. 2023, doi: 10.30865/json.v5i2.6124.

R. Pasya Sidik, T. Rohana and Rahmat, “Klasifikasi Data Pokok Pendidikan Sekolah Dasar dan Sekolah Menengah Peratama Menggunakan Algoritma Naive Bayes serta C4.5,”Scientific Student Journal for Information, Technology and Science”, vol. 5, no. 1, 2024.

A. Dina, I. Permana, F. Muttakin, and I. Maita, “Perbandingan Algoritma NBC, KNN, dan C4.5 Untuk Klasifikasi Penerima Bantuan Program Keluarga Harapan,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, p. 1079, Jul. 2023, doi: 10.30865/mib.v7i3.6316.

A. Irsyada, E. Haerani, M. Irsyad, F. Wulandari, and L. Afriyanti, “Penerapan Algoritma Naïve Bayes Terhadap Klasifikasi Penerima Bantuan Program Keluarga Harapan (PKH),” Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, p. 457, Dec. 2023, doi: 10.30865/json.v5i2.7203.

N. Iftah Nella, N. Yudi Setiawan, and D. Eka Ratnawati, “Klasifikasi Penerima Bantuan Program Keluarga Harapan menggunakan Algoritme Decision Tree C4.5 (Studi Kasus: Desa Mlirip Kabupaten Mojokerto),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 3, pp. 1332–1339, 2022.

A. Fitria Yulia and P. Bintoro, “K-Means Clustering in Determining the Eligibility of Recipients of Assistance for the Poor Case Study of Village Sukoharjo III,” International Journal of Software Engineering and Informatics, vol. 1, no. 1, pp. 63–70, 2023, [Online]. Available: https://journal.aisyahuniversity.ac.id/index.php/IJosei

M. S. Hartawan, Moh. Erkamim, S. Rachmawati, N. C. Santi, L. Legito, and S. Sepriano, “Penerapan Algoritma Supervised Learning untuk Klasifikasi Program Keluarga Harapan,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, 2023.

I. Nurjanah, J. Karaman, I. Widaningrum, and D. Mustikasari, “Penggunaan Algoritma Naive Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa,” Journal of Computer Science and Information Technology E-ISSN, vol. 3, no. 2, p. 77, 2023.

A. Nur, A. Rohim, A. I. Purnamasari, and I. Ali, “Komparasi Efektivitas Algoritma C4.5 dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Manfaat Program Keluarga Harapan, Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, 2024.

T. D. Ramadhan, D. Wahiddin, and E. E. Awal, “Klasifikasi Sentimen Terhadap Pinjaman Online (Pinjol) Menggunakan Algoritma Naive Bayes,” vol. IV, no. 1, 2023, [Online]. Available: www.tripadvisor.com

R. Yati, T. Rohana, and A. R. Pratama, “Klasifikasi Jenis Mangga Menggunakan Algoritma Convolutional Neural Network,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, p. 1265, Jul. 2023, doi: 10.30865/mib.v7i3.6445.

R. Rifaldi et al., “Analisis Sentimen Pemboikotan Produk dengan Pendekatan Algoritma Naïve Bayes Media Sosial X,” Journal of Information System Research (JOSH), vol. 5, no. 4, pp. 940–946, 2024, doi: 10.47065/josh.v5i4.5420.

A. P. Pristiawati, I. Permana, Z. Zarnelly, and F. Muttakin, “Klasifikasi Penerima Bantuan Beras Miskin Menggunakan Algoritma K-NN, NBC dan C4.5,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3617.

F. Noer Azzahra et al., “Penerapan Metode Naive Bayes Dalam Klasifikasi Spam SMS Menggunakan Fitur Teks Untuk Mengatasi Ancaman Pada Pengguna,” Journal of Information System Research (JOSH), vol. 5, no. 3, p. 880, 2024, doi: 10.47065/josh.v5i3.5070.

Published
2024-10-25
How to Cite
[1]
F. A. Fauzi, T. Rohana, A. R. Juwita, and D. Wahiddin, “CLASSIFICATION OF FAMILY HOPE PROGRAM RECIPIENTS USING NAIVE BAYES AND C4.5 METHODS”, J. Tek. Inform. (JUTIF), vol. 5, no. 5, pp. 1413-1421, Oct. 2024.