IDENTIFICATION OF THE COVID-19 DISTRIBUTION AREA ON THE ISLAND OF KALIMANTAN USING THE K-MEANS SPATIAL CLUSTERING METHOD

  • Fabian Valerian Informatika, Fakultas Teknologi Informasi, Universitas Kristen Satya Wacana, Indonesia
  • Sri Yulianto Informatika, Fakultas Teknologi Informasi, Universitas Kristen Satya Wacana, Indonesia
Keywords: Clustering, Data Mining, Geographic Information, K-Means Algorithm, Spread of The COVID-19 Virus

Abstract

Based on the map of the spread of COVID-19 in Indonesia, Kalimantan Island is the second island with the number of COVID-19 distributions after Java Island.  The purpose of this study is to provide information to the entire community and government, especially the Kalimantan region regarding the clustering of the spread of COVID-19.  The K-Means algorithm method used in the grouping is based on data on positive, recovered, and deceased people collected by each province on the island of Kalimantan, then a geographic information system (GIS) is applied in mapping to display the clustered distribution area of ​​each district on the island of Kalimantan.  The result of this research is that the k-means algorithm is able to classify data with low, medium, and high distribution levels so that later the distribution area can be mapped using GIS based on the results of the clustering. With the results of this application, it is hoped that it can be used as information for the government and also the public to think about what efforts should be made if bad things happen later, based on the level of spread to be used as a priority scale in controlling the spread of the COVID-19 virus.

Downloads

Download data is not yet available.

References

M. Lavielle and P. D. Waggoner, “Exploring and Comparing Unsupervised Clustering Algorithms,” J. Open Res. Softw., vol. 8, no. 1, pp. xx–xx, 2020, doi: 10.5334/jors.269.

D. D. Darmansah and N. W. Wardani, “Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 105–117, 2021, doi: 10.35957/jatisi.v8i1.590.

W. Yustanti, N. Rahmawati, and Y. Yamasari, “Klastering Wilayah Kota/Kabupaten Berdasarkan Data Persebaran Covid-19 Di Propinsi Jawa Timur dengan Metode K-Means,” JIEET (Journal Inf. Eng. Educ. Technol., vol. 4, no. 1, pp. 1–9, 2020, [Online]. Available: https://journal.unesa.ac.id/index.php/jieet/article/view/8590.

A. Solichin and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona (Covid-19) Di DKI Jakarta Menggunakan Metode K-Means,” Fountain Informatics J., vol. 5, no. 2, p. 52, 2020, doi: 10.21111/fij.v5i2.4905.

R. D. Bekti, Y. Setyawan, and E. Laksminiasih, “Spatial Area Model for Covid-19 in Java Based on R-Shiny Web Framework,” J. Mat. Stat. dan Komputasi, vol. 17, no. 3, pp. 381–393, 2021, doi: 10.20956/j.v17i3.11743.

Y. A. Priambodo and S. Y. J. Prasetyo, “Pemetaan Penyebaran Guru di Provinsi Banten dengan Menggunakan Metode Spatial Clustering K-Means (Studi kasus : Wilayah Provinsi Banten),” Indones. J. Comput. Model., vol. 1, no. 1, pp. 18–27, 2018, doi: 10.24246/j.icm.2018.v1.i1.p18-27.

Z. I. Alfianti, “Pengelompokan Wilayah Penyebaran Covid-19 Di Kabupaten Karawang Menggunakan Algoritma K-Means,” J. Ilm. Inform. Komput., vol. 26, no. 2, pp. 111–122, 2021, doi: 10.35760/ik.2021.v26i2.4155.

D. N. P. Sari and Y. L. Sukestiyarno, “Analisis Cluster dengan Metode K-Means pada Persebaran Kasus Covid-19 Berdasarkan Provinsi di Indonesia,” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 602–610, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/.

F. S. Muhammad Wildan Goni , Dudih Gustian, “IMPLEMENTASI K-MEANS DALAM PENGELOMPOKAN PENYEBARAN COVID-19 DI JAWA BARAT,” Jurnal Ilmiah Komputer., pp. 107–118, 2021, doi :10.35889/progresif.v17i2.648.

A. A. Vernanda, A. Faisol, and N. Vendyansyah, “Penerapan Metode K-Means Clustering Untuk Pemetaan Daerah Rawan Kecelakaan Lalu Lintas Di Kota Malang Berbasis Website,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 836–844, 2021, doi: 10.36040/jati.v5i2.3791.

A. Bastian, H. Sujadi, and G. Febrianto, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),” Jurnal Sistem Informasi (Journal of Information System)., no. 1, pp. 26–32., 2018, doi:10.21609/jsi.v14i1.566.

L. Gayatri and H. Hendry, “Pemetaan Penyebaran Covid-19 Pada Tingkat Kabupaten/Kota Di Pulau Jawa Menggunakan Algoritma K-Means Clustering,” Sebatik, vol. 25, no. 2, pp. 493–499, 2021, doi: 10.46984/sebatik.v25i2.1307.

S. Annas and Z. Rais, “k-Means and GIS for Mapping Natural Disaster Prone Areas in Indonesia,” EAI, pp. 1–7, 2020, doi: 10.4108/eai.12-10-2019.2296336.

Mirantika, Nita, A. T. diviana agnia, “Penerapan Algoritma K-Means Clustering untuk Pengelompokan Penyebaran COVID-19,” nuansa informatika, vol.15, no. 2, pp. 92–98, 2021, doi:10.25134/nuansa.v15i2.4321.

D. S. Saputri, G. M. Putra, and M. F. Larasati, “IMPLEMENTATION OF THE K-MEANS CLUSTERING ALGORITHM FOR THE COVID-19 VACCINATED VILLAGE IN THE UJUNG PADANG SUB-DISTRICT IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING UNTUK DESA TERVAKSINASI COVID-19 PADA KECAMATAN UJUNG PADANG,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 2, pp. 261–267, 2022, doi:10.20884/1.jutif.2022.3.2.165.

Published
2022-08-20
How to Cite
[1]
F. Valerian and S. Yulianto, “IDENTIFICATION OF THE COVID-19 DISTRIBUTION AREA ON THE ISLAND OF KALIMANTAN USING THE K-MEANS SPATIAL CLUSTERING METHOD”, J. Tek. Inform. (JUTIF), vol. 3, no. 4, pp. 839-346, Aug. 2022.