COMPARISON OF PREDICTION ANALYSIS OF GOFOOD SERVICE USERS USING THE KNN & NAIVE BAYES ALGORITHM WITH RAPIDMINER SOFTWARE
Abstract
GoFood is a service provider that has a very important role in human life, especially in this growing era. Currently, many service providers are competing to meet the needs of users, including GoFood. However, not all service providers can meet and know the needs needed by users, because they focus on the services offered and only the quality of services provided. Therefore, survey analysis is needed to obtain customer satisfaction data that will be used to satisfy GoFood service users. The classification method uses the KNN and Naive Bayes algorithms, which are good algorithms for testing 1,000 records of GoFood user data that have been obtained previously. The test results using Cross Validation and T-Test show that the KNN algorithm is the best algorithm with 98.80% Accuracy and 100% Recall, while Naive Bayes obtains 94.10% Accuracy and 94.43% Recall.
Downloads
References
S. Agarwal, Data mining: Data mining concepts and techniques. 2014.
N. Nurhachita and E. S. Negara, “A Comparison Between Naïve Bayes and The K-Means Clustering Algorithm for The Application of Data Mining on The Admission of New Students,” J. Intelekt. Keislaman, Sos. dan Sains, vol. 9, no. 1, pp. 51–62, 2020, doi: 10.19109/intelektualita.v9i1.5574.
V. Novita Sari and D. Suranti, “IMPLEMENTASI METODE BAYES DALAM EVALUASI KEPUASAN MAHASISWA TERHADAP LAYANAN UNIVERSITAS,” Sintech J., vol. 4, 2021, doi: https://doi.org/10.31598/sintechjournal.v4i1.569.
Aprilla Dennis, Belajar Data Mining dengan RapidMiner, vol. 5, no. 4. 2013.
B. Hermanto and A. Romadhoni, “PENERAPAN METODE NAÏVE BAYES UNTUK PREDIKSI KEPUASAN PELANGGAN STUDI KASUS BENGKEL WIN MOTOR,” SIGMA - J. Teknol. Pelita Bangsa, vol. 9, 2019.
T. H. Apandi and C. A. Sugianto, “Algoritma Naive Bayes untuk Prediksi Kepuasan Pelayanan Perekaman e-KTP (Naive Bayes Algorithm for Satisfaction Prediction of e-ID Card Recording Service),” JUITA J. Inform., vol. 7, no. 2, pp. 125–128, 2019, doi: 10.30595/juita.v7i2.3608.
M. G. Sadewo, A. Perdana Windarto, I. S. Damanik, S. Tunas, and B. Pematangsiantar, “Prosiding Seminar Nasional Riset Information Science (SENARIS) Algoritma Naïve Bayes Dalam Memprediksi Kepuasan Nasabah,” 2019, p. 318.
A. Prayoga Permana, K. Ainiyah, and K. Fahmi Hayati Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKa, vol. 6, no. 3, pp. 178–188, 2021, [Online]. Available: https://www.kaggle.com/manishkc06/startup-success-prediction.
D. T. Larose and C. D. Larose, DISCOVERING KNOWLEDGE IN DATA An Introduction to Data Mining Second Edition Wiley Series on Methods and Applications in Data Mining. 2014.
N. Bayes Yunitasari et al., “Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-Nearest Neighbor (k-NN) dan,” Technomedia J., vol. 6, 2021, doi: 10.33050/tmj.v6i1.
Yoga Religia and A. Amali, “Perbandingan Optimasi Feature Selection pada Naïve Bayes untuk Klasifikasi Kepuasan Airline Passenger,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 527–533, 2021, doi: 10.29207/resti.v5i3.3086.
Yoga Religia, Agung Nugroho, and Wahyu Hadikristanto, “Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 187–192, 2021, doi: 10.29207/resti.v5i1.2813.
L. N. Martin, “Comparison of C4.5 and Naïve Bayes Algorithms for Assessment of Public Complaints Services,” JITE (Journal Informatics Telecommun. Eng. Available, vol. 3, no. 2, pp. 266–271, 2020.
T. Safitri, “Penerapan Algoritma Naïve Bayes Untuk Penentuan Calon Penerimaan Beasiswa Pada Sd Negeri 6 Ketapang,” J. Inform. dan Sist. Inf., vol. 06, no. 01, pp. 43–52, 2020.
A. Heriyanto, “Penerapan Metode K-Nearest Neighbor (KNN) Untuk Klasifikasi Stanting Pada Balita,” Publ. Ilm. Univ. Muhammadiyah Jember, 2021.
F. Yulia, Lamsah, and Periyadi, BUKU MANAJEMEN PEMASARAN_compressed.pdf, no. April. 2019.
Budi Indrawati, M. Wijayanti, and T. Yuniati, “AnalisisKualitas Layanan dan KepercayaanTerhadap Kepuasan Konsumen yang Berimplikasi padaLoyalitas Pelanggan Gofooddi Kota Bekasi,” Optim. J. Ekon. dan Kewirausahaan, vol. 15, no. 2, p. 61, 2021.
I. M. Pasaribu, “ANALISIS PELAYANAN JASA APLIKASI GO JEK TERHADAP KEPUASAN KONSUMEN,” J. Pros., no. 1, pp. 21–29, 2021.
A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021, doi: 10.20884/1.jutif.2021.2.2.51.
Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, and M. Waluyo, “Prediction for Cooperative Credit Eligibility Using Data Mining Classification With C4.5 Algorithm,” J. Tek. Inform., vol. 2, no. 2, pp. 67–74, 2021, doi: 10.20884/1.jutif.2021.2.2.49.
A. Pamuji, H. S. Setiawan, and B. K. Islam, “LINEAR REGRESSION FOR PREDICTION OF EXCESSIVE PERMISSIONS,” vol. 3, no. 2, pp. 467–474, 2022.
I. Agustina, J. Eska, and I. R. Harahap, “APPLICATION OF C4 . 5 ALGORITHM FOR DETERMINATION OF THE COMMUNITY OF RECIPIENTS OF PROSPEROUS FAMILY CARDS IN THE PENERIMA KARTU KELUARGA SEJAHTERA PADA DESA SUKARAMAI,” vol. 3, no. 2, pp. 1–7, 2022.
Copyright (c) 2022 Agista Nindy Yuliarina
This work is licensed under a Creative Commons Attribution 4.0 International License.