TWITTER SENTIMENT ANALYSIS PEDULILINDUNGI APPLICATION USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE
Abstract
The PeduliLindungi application is an application launched by the government during the COVID-19 pandemic, with the aim of helping government agencies carry out digital tracking to monitor the public, as an effort to prevent the spread of the Corona virus. Many people express their opinions on the PeduliLindung application on social media, one of which is through Twitter. To improve the performance of the application, of course, need input or complaints from users, opinions from the public on Twitter about the PeduliLindungi application can be input to improve or improve the performance of the application. Sentiment analysis is carried out to see how the public's sentiment towards the PeduliLindung application is, and these sentiments will be categorized into positive sentiment and negative sentiment, this sentiment can later be used as evaluation material for application development. This study aims to see and compare the accuracy of two classification methods, Naïve Bayes and Support Vector Machine in the classification process of sentiment analysis. The data used are 4636 tweets with the keyword " PeduliLindungi". The data obtained then goes to the pre-processing stage before going to the classification stage. The results obtained after classifying using the Naïve Bayes method and the Support Vector Machine show that the Support Vector Machine method has a higher accuracy of 91%, while the Naïve Bayes method has an accuracy of 90%.
Downloads
References
P. Arsi and R. Waluyo, “ANALISIS SENTIMEN WACANA PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK, vol. 8, no. 1, pp. 147–156, 2021, doi: 10.25126/jtiik.202183944.
N. Nurhidayati, S. Sugiyah, and K. Yuliantari, “Pengaturan Perlindungan Data Pribadi Dalam Penggunaan Aplikasi Pedulilindungi,” Widya Cipta: Jurnal Sekretari dan Manajemen, vol. 5, no. 1, pp. 39–45, 2021, doi: 10.31294/widyacipta.v5i1.9447.
S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit,” Jurnal Informatik, vol. 15, no. 3, pp. 157–168, 2019.
S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, pp. 157–163, 2021, doi: 10.30865/mib.v5i1.2580.
W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier,” Jurnal Data Mining dan Sistem Informasi, vol. 2, no. 2, pp. 1–9, 2021.
B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.
F. Sodik and I. Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,” Prisma, vol. 4, pp. 628–634, 2021.
Yudi Permana A and Makmun Effendi M, “Analisis Sentimen pada Teks Opini Penilaian Kinerja Dosen dengan Pendekatan Algoritma KNN,” Jurnal Ilmiah Komputasi, vol. 19, no. 1, pp. 39–50, 2020, doi: 10.32409/jikstik.19.1.154.
W. Athira, I. Gholissodin, and rizal setya Perdana, “Analisis Sentimen Cyberbullying Pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 11, pp. 4704–4713, 2018.
L. Hermawan and M. Bellaniar Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,” Jurnal Transformatika, vol. 17, no. 2, pp. 188–199, 2020, doi: 10.26623/transformatika.v17i2.1705.
P. E. Mas’udia, M. D. Atmadja, and L. D. Mustafa, “INFORMATION RETRIEVAL TUGAS AKHIR DAN PERHITUNGAN KEMIRIPAN DOKUMEN MENGACU PADA ABSTRAK MENGGUNAKAN VECTOR SPACE MODEL,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 355–362, 2017, doi: 10.24176/simet.v8i1.1016.
A. Guterres, Gunawan, and J. Santoso, “Stemming Bahasa Tetun Menggunakan Pendekatan Rule Based,” Teknika, vol. 8, no. 2, pp. 142–147, 2019, doi: 10.34148/teknika.v8i2.224.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” Journal of Intelligent System and Computation, vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.
P. R. Sihombing and A. M. Arsani, “COMPARISON OF MACHINE LEARNING METHODS IN CLASSIFYING POVERTY IN INDONESIA IN 2018,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 51–56, 2021, doi: 10.20884/1.jutif.2021.2.1.52.
B. Harijanto, Y. Ariyanto, and L. Miftahurroifa, “PENERAPAN ALGORITMA NAÏVE BAYES UNTUK KLASIFIKASI RETENSI ARSIP,” Jurnal Informatika Polinema, vol. 4, no. 2, pp. 155–160, 2018, doi: 10.33795/jip.v4i2.159.
A. Perdana and M. T. Furqon, “Penerapan Algoritma Support Vector Machine ( SVM ) Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia ( Studi Kasus : RSJ . Radjiman Wediodiningrat , Lawang ),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 9, pp. 3162–3167, 2018.
S. Proboningrum and Acihmah Sidauruk, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER KAIN DENGAN METODE MOORA,” JSiI (Jurnal Sistem Informasi), vol. 8, no. 1, pp. 43–48, 2021, doi: 10.30656/jsii.v8i1.3073.
P. Amira Sumitro et al., “Analisis Sentimen Terhadapat Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based,” Jurnal Informatikan dan Teknologi Komputer, vol. 2, no. 2, pp. 50–56, 2021, [Online]. Available: https://developer.twitter.com
H. Sujadi, S. Fajar, and C. Roni, “ANALISIS SENTIMEN PENGGUNA MEDIA SOSIAL TWITTER TERHADAP WABAH COVID-19 DENGAN METODE NAIVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE,” INFOTECH Journal, vol. 8, no. 1, pp. 22–27, 2022, doi: 10.31949/infotech.v8i1.1883.
Copyright (c) 2022 Indra Yunanto
This work is licensed under a Creative Commons Attribution 4.0 International License.