ENSEMBLE MACHINE LEARNING WITH NEURAL NETWORK STUNTING PREDICTION AT PURBARATU TASIKMALAYA

  • Muhammad Al-Husaini Faculty Engineering , Informatics Department, Siliwangi University, Tasikmalaya, Indonesia
  • Hen Hen Faculty Engineering , Informatics Department, Siliwangi University, Tasikmalaya, Indonesia
  • Randi Rizal Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia
  • Luh Desi Puspareni Faculty Health Science, Public Health Department, Siliwangi University, Tasikmalaya, Indonesia
  • Irani Hoeronis Faculty Engineering , Informatics Department, Siliwangi University, Tasikmalaya, Indonesia
Keywords: ensemble model, machine learning, neural network, Weight/Age, Height/Age, Weight/Height

Abstract

This research uses an ensemble model and neural network method that combines several machine learning algorithms used in the prediction of stunting and nutritional status children in Purbaratu Tasikmalaya.  This ensemble method is complemented by a combination of the prediction results of several algorithms used to improve accuracy. The data used is anthropometry-based calculations of 195 toddlers with 39% of related stunting from 501 total data in Purbaratu Tasikmalaya City; high rates of stunting this research urgent to make a stable model for prediction. The results of this study are significant as they provide a more accurate and efficient method for predicting stunting and nutritional status in children, which can be crucial for early intervention and prevention strategies in public health and nutrition. The best accuracy value for some of these categories is 98, 21% for the Weight/Age category with the xGBoost algorithm, 97.7% of the best accuracy results with the Random Forest and Decision Tree algorithms for the Height/Age category, the Weight/Height category with the best accuracy of 97.4% for the Random Forest and xGBoost algorithms, and the use of neural network models resulted in an accuracy of 99.19% for Weight/Age and Height/Age while for Weight/Height resulted in an accuracy of 91.94%..

Downloads

Download data is not yet available.

References

Katadata, “Daftar-prevalensi-balita-stunting-di-indonesia-pada-2022-provinsi-mana-teratas,” 2022. https://databoks.katadata.co.id/datapublish/2023/02/02/daftar-prevalensi-balita-stunting-di-indonesia-pada-2022-provinsi-mana-teratas

Kementerian Kesehatan, “Cegah Stunting Itu Penting!,” Cegah Stunting itu Penting, vol. 4, no. 2, pp. 63–67, 2022, doi: 10.54339/jurdikmas.v4i2.417.

E. Selviyanti, M. C. Roziqin, D. S. H. Putra, and M. S. Noor, “Intelligent Application of Stunting Monitoring and Mapping Systems (Smart Ting) in Toddlers Based on Android in Jember,” Proc. 2nd Int. Conf. Soc. Sci. Humanit. Public Heal. (icosh. 2021), vol. 645, no. Icoship 2021, pp. 147–157, 2022, doi: 10.2991/assehr.k.220207.024.

S. Sugiyanto and S. Sumarlan, “Analisa Faktor Yang Berhubungan Dengan Stunting Pada Balita Usia 25-60 Bulan,” J. Kesehat. PERINTIS (Perintis’s Heal. Journal), vol. 7, no. 2, pp. 9–20, 2021, doi: 10.33653/jkp.v7i2.485.

D. D. S. Fatimah, Y. Septiana, and G. Ramadhan, “Rancang Bangun Aplikasi Sistem Pakar Diagnosa Penyakit Stunting Berbasis Web Menggunakan Metode Certainty Factor,” J. Algoritm., vol. 19, no. 2, pp. 547–557, 2022, doi: 10.33364/algoritma/v.19-2.1144.

S. P. Manongga, H. Hendry, and D. H. F. Manongga, “Predicting a stunting prevalence using semi-supervised learning models in east nusa tenggara,” Int. J. Innov. Comput. Inf. Control, vol. 19, no. 4, pp. 1073–1086, 2023, doi: 10.24507/ijicic.19.04.1073.

A. S. Iorhemen, “Random Forest Ensemble Machine Learning Model for Early Detection and Prediction of Weight Category,” J. Data Sci. Intell. Syst., vol. 00, no. September, pp. 1–8, 2023, doi: 10.47852/bonviewjdsis32021149.

H. H. Lukmana, M. Al-husaini, L. D. Puspareni, and I. Hoeronis, “Rancang Bangun Sistem Informasi Deteksi Dini Stunting dengan Metode Artificial Neural Network Development of an Early Detection Information System for Stunting Using the Artificial Neural Network Method,” vol. 12, no. 3, 2024, doi: 10.26418/justin.v12i3.80119.

M. H. Kalayou, A. A. K. Kassaw, and K. B. Shiferaw, “Empowering child health: Harnessing machine learning to predict acute respiratory infections in Ethiopian under-fives using demographic and health survey insights,” BMC Infect. Dis., vol. 24, no. 1, pp. 1–13, 2024, doi: 10.1186/s12879-024-09195-2.

T. Z. Yehuala et al., “Machine learning algorithms to predict healthcare-seeking behaviors of mothers for acute respiratory infections and their determinants among children under five in sub-Saharan Africa,” Front. Public Heal., vol. 12, no. June, 2024, doi: 10.3389/fpubh.2024.1362392.

B. Ogwel, V. H. Mzazi, A. O. Awuor, C. Okonji, R. O. Anyango, and ..., “Predictive Modelling of Linear Growth Faltering Among Pediatric Patients with Diarrhea in Rural Western Kenya: An Explainable Machine Learning Approach,” 2024, doi: https://doi.org/10.21203/rs.3.rs-4047381/v1.

F. H. Bitew, C. S. Sparks, and S. H. Nyarko, “Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia,” Public Health Nutr., vol. 25, no. 2, pp. 269–280, 2022, doi: 10.1017/S1368980021004262.

S. M. Ahmed et al., “Derivation and external validation of clinical prediction rules identifying children at risk of linear growth faltering,” Elife, vol. 12, pp. 1–18, 2023, doi: 10.7554/eLife.78491.

O. N. Chilyabanyama et al., “Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia,” Children, vol. 9, no. 7, 2022, doi: 10.3390/children9071082.

I. Rahmi, M. Susanti, H. Yozza, and F. Wulandari, “Classification of Stunting in Children Under Five Years in Padang City Using Support Vector Machine,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 3, pp. 771–778, 2022, doi: 10.30598/barekengvol16iss3pp771-778.

J. R. Khan, J. H. Tomal, and E. Raheem, “Model and variable selection using machine learning methods with applications to childhood stunting in Bangladesh Model and variable selection using machine learning methods with applications to childhood stunting in Bangladesh,” Informatics Heal. Soc. Care, vol. 00, no. 00, pp. 1–18, 2021, doi: 10.1080/17538157.2021.1904938.

D. Chicco and G. Jurman, “An ensemble learning approach for enhanced classification of patients with hepatitis and cirrhosis,” IEEE Access, vol. 9, pp. 24485–24498, 2021, doi: 10.1109/ACCESS.2021.3057196.

A. A. Bakar, R. Hamdan, and N. S. Sani, “Ensemble learning for multidimensional poverty classification,” Sains Malaysiana, vol. 49, no. 2, pp. 447–459, 2020, doi: 10.17576/jsm-2020-4902-24.

M. Heydarian and T. E. Doyle, “MLCM : Multi-Label Confusion Matrix,” pp. 19083–19095, 2022.

A.J Lamer, The 2x2 Matrix: Contingency, Confusion and the Metrics of Binary Classification. Springer International Publishing, 2022.

R. Kusumaningrum, T. A. Indihatmoko, S. R. Juwita, A. F. Hanifah, K. Khadijah, and B. Surarso, “Benchmarking of multi-class algorithms for classifying documents related to stunting,” Appl. Sci., vol. 10, no. 23, pp. 1–13, 2020, doi: 10.3390/app10238621.

Published
2024-10-25
How to Cite
[1]
M. Al-Husaini, H. H. Lukmana, R. Rizal, L. D. Puspareni, and I. Hoeronis, “ENSEMBLE MACHINE LEARNING WITH NEURAL NETWORK STUNTING PREDICTION AT PURBARATU TASIKMALAYA”, J. Tek. Inform. (JUTIF), vol. 5, no. 5, pp. 1327-1336, Oct. 2024.

Most read articles by the same author(s)