CLASSIFICATION OF RICE ELIGIBILITY BASED ON INTACT AND NON-INTACT RICE SHAPES USING YOLO V8-BASED CNN ALGORITHM
Abstract
The large amount of unfit rice has an impact on the quality of rice provided to the community. This is due to the lack of supervision of the quality of existing rice, so that the quality of rice distributed to the community has a lot of unfit quality. Rice production for public consumption reached 21.69 million tons in 2021, according to data from the Central Statistics Agency (BPS). Rice is the main food of the Indonesian people because most Indonesians are farmers and the vast amount of agricultural land makes Indonesia one of the largest rice producing countries in Southeast Asia, this has a huge impact on people's habits in consuming rice as the main food provider. The Government of the Republic of Indonesia started a Social Assistance rice distribution program through the Ministry of Social Affairs in 2018. This program is named Prosperous Rice Social Assistance (Bansos Rastra). Classification of rice eligibility can be the first step to ensure that the rice received from the government is of high quality and can meet the daily needs of households in Indonesia. CNN algorithm based on YOLOv8 system can automatically recognize the form of rice given by the government whether it is feasible or not. In the research stages there are dataset collection, preprocessing, training models to evaluation. Based on the results obtained in this study, the accuracy achieved is 79% for the Eligible class and 79% for the Ineligible class with Confidence score reaching a value of 1.00. The results of this study can be used as a decent and unfit rice classification detection model by looking at the shape of the rice. So that the rice distributed to the community has decent rice quality.
Downloads
References
“Badan Pusat Statistik - Luas Panen dan Produksi Padi di Indonesia 2021”.
P. D. Wijayati, N. Harianto, and A. Suryana, “Permintaan Pangan Sumber Karbohidrat di Indonesia,” Analisis Kebijakan Pertanian, vol. 17, no. 1, p. 13, Jun. 2019, doi: 10.21082/akp.v17n1.2019.13-26.
//Beritapagi Co Id, “PENGELOLAAN BANTUAN SOSIAL BERAS SEJAHTERA (BANSOS RASTRA).” [Online]. Available: http://beritapagi.co.id
M. E. Ramdhany et al., “PROTOTYPE SISTEM PEMBAGIAN BERAS BANSOS BERBASIS IOT MENGGUNAKAN E-KTP 1*”, [Online]. Available: https://journal.diginus.id/index.php/PISCES/index1
F. Paramudita and M. I. Zulfa, “Aplikasi Android Pendeteksi Kualitas Beras Berbasis Machine Learning Menggunakan Metode Convolutional Neural Network,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 3, no. 7, pp. 297–305, Aug. 2023, doi: 10.52436/1.jpti.310.
J. Manager, “DEWAN REDAKSI,” 2020. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jire
S. Ma’arif, T. Rohana, and K. A. Baihaqi, “Deteksi Jenis Beras Menggunakan Algoritma YOLOv3,” vol. III, no. 1, p. 219, 2022.
J. Manager, “DEWAN REDAKSI,” 2020. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jire
A. Asnidar, A. A. M. Perdana, M. R. Ilham, A. B. Kaswar, and D. D. Andayani, “CLASSIFICATION OF RICE QUALITY LEVELS BASED ON COLOR AND SHAPE FEATURES USING ARTIFICIAL NEURAL NETWORK BASED ON DIGITAL IMAGE PROCESSING,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1457–1468, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.734.
N. Eka Budiyanta et al., “Sistem Deteksi Kemurnian Beras berbasis Computer Vision dengan Pendekatan Algoritma YOLO,” vol. 6, no. 1, 2021.
S. Tegar Prabowo, W. Hadikurniawati, U. Stikubank Semarang, and J. Tri Lomba Juang No, “DETEKSI DAN PENGENALAN JENIS BERAS MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” 2023.
Muhammad Rais Wathani and Nur Hidayati, “Analisis Perbandingan Fungsi Aktivasi CNN Pada Pengelompokan Jenis Beras Berdasarkan Mutu Beras,” BRAHMANA: Jurnal Penerapan Kecerdasan Buatan, vol. 4, pp. 144–153, Jun. 2023.
“Pemanfaatan Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Beras Berbasis Citra.”
G. Budiono and R. Wirawan, “CLASSIFICATION OF RICE TEXTURE BASED ON RICE IMAGE USED THE CONVOLUTIONAL NEURAL NETWORK METHOD,” Jurnal Techno Nusa Mandiri, vol. 20, no. 2, pp. 102–107, Sep. 2023, doi: 10.33480/techno.v20i2.4666.
“IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK PENENTUAN KUALITAS BERAS BERDASARKAN BENTUK DAN WARNA”.
“YOLO-V8 PENINGKATAN ALGORITMA UNTUK DETEKSI PEMAKAIAN MASKER WAJAH”.
P. Sharma, Y. P. S. Berwal, and W. Ghai, “Performance analysis of deep learning CNN models for disease detection in plants using image segmentation,” Information Processing in Agriculture, vol. 7, no. 4, pp. 566–574, Dec. 2020, doi: 10.1016/j.inpa.2019.11.001.
I. P. Sari, F. Ramadhani, A. Satria, and D. Apdilah, “Implementasi Pengolahan Citra Digital dalam Pengenalan Wajah menggunakan Algoritma PCA dan Viola Jones,” Hello World Jurnal Ilmu Komputer, vol. 2, no. 3, pp. 146–157, Oct. 2023, doi: 10.56211/helloworld.v2i3.346.
M. R. Prasanta, M. Yoga Pranata, M. A. Firnanda, and S. Sendari, “CYCLOTRON : Jurnal Teknik Elektro Rancang Bangun Quadcopter Drone Untuk Deteksi Api Menggunakan YOLOv4,” 2022.
M. Yoga Wibowo, H. Hikmayanti, A. Fitri Nur Masruriyah, E. Novalia, and N. Heryana, “Mask Use Detection in Public Places Using the Convolutional Neural Network Algorithm,” 2023.
R. Yati, T. Rohana, and A. Rizky Pratama, “Klasifikasi Jenis Mangga Menggunakan Algoritma Convolutional Neural Network,” vol. 7, no. 3, pp. 1265–1275, 2023, doi: 10.30865/mib.v7i3.6445.
A. A. Santosa, R. Y. N. Fu’adah, and S. Rizal, “Deteksi Penyakit pada Tanaman Padi Menggunakan Pengolahan Citra Digital dengan Metode Convolutional Neural Network,” JOURNAL OF ELECTRICAL AND SYSTEM CONTROL ENGINEERING, vol. 6, no. 2, pp. 98–108, Feb. 2023, doi: 10.31289/jesce.v6i2.7930.
K. A. Baihaqi and Y. Cahyana, “Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3,” 2021.
I. Nawangsih, I. Melani, S. Fauziah, and A. I. Artikel, “PELITA TEKNOLOGI PREDIKSI PENGANGKATAN KARYAWAN DENGAN METODE ALGORITMA C5.0 (STUDI KASUS PT. MATARAM CAKRA BUANA AGUNG,” Jurnal Pelita Teknologi, vol. 16, no. 2, pp. 24–33, 2021.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection.” [Online]. Available: http://pjreddie.com/yolo/
N. Eka Budiyanta et al., “Sistem Deteksi Kemurnian Beras berbasis Computer Vision dengan Pendekatan Algoritma YOLO,” vol. 6, no. 1, 2021.
Copyright (c) 2024 Nazwa Putri Hastari, Tatang Rohana, Anis Fitri Nur Masruriyah, Deden Wahiddin
This work is licensed under a Creative Commons Attribution 4.0 International License.