IMPLEMENTATION OF BACKPROPAGATION ARTIFICIAL NEURAL NETWORK FOR FOOD PRICE PREDICTION IN MAJENE CENTRAL MARKET

  • Arnita Irianti Program Studi Teknik Informatika, Fakultas Teknik, Universitas Sulawesi Barat, Indonesia
  • Parma Hadi Rantelinggi Jurusan Teknik Informatika, Fakultas Teknik, Universitas Papua, Indonesia
  • Alief Taufik Program Studi Teknik Informatika, Fakultas Teknik, Universitas Sulawesi Barat, Indonesia
  • Nuralamsah Zulkarnaim Program Studi Teknik Informatika, Fakultas Teknik, Universitas Sulawesi Barat, Indonesia
  • Sugiarto Cokrowibowo Program Studi Teknik Informatika, Fakultas Teknik, Universitas Sulawesi Barat, Indonesia
Keywords: Neural Networks, Backpropagation, Prediction, Food Prices

Abstract

Food has a fairly high price and the stability of food prices can affect entrepreneurs and the community in meeting their daily needs. This is often seen as a sudden increase in prices (extreme). Therefore, it is necessary to have precise and accurate forecasts or predictions to assist local governments in taking the initial steps in efforts to stabilize food prices. Artificial Neural Networks (ANN) can be used to predict future food prices using the Backpropagation Algorithm. Sental Market is one of the trading centers for daily necessities in Majene district, West Sulawesi. The study used data taken from the Office of Cooperatives, SMEs, Industrial Trade, Kab. Majene, in the form of food price data per week. The research aims to assist the Majene Regional Government (PEMDA) in taking initial steps / policies to stabilize food prices. The system is designed to predict food prices by applying a Backpropagation Neural Network, then reviewing the accuracy obtained in the food price prediction system for each commodity. The results of the study used a Backpropagation Neural Network pattern with a total data of ±156 for each commodity. The results of the study used N.Input of 2, N.Hidden of 3, and N.Output of 1. While the parameters used were Alpha of 0.3, an error tolerance of 0.001, and a maximum iteration of 100. The highest accuracy in the prediction of Commodity Rice Prices was 98.47 with the computation time for the training and testing process being 1.69 and 0.004 respectively.

Downloads

Download data is not yet available.

References

A. I. . Tari and R. Widyastuti, “Ibm Diversifikasi Pangan Pemanfaatan Pangan Lokal Bagi Pkk Kampung Mranggen Jawa Tengah,” 2020.

BPS Kabupaten Majene, “Badan Pusat Statistik Kabupaten Majene.” [Online]. Available: https://majenekab.bps.go.id/indicator/12/29/1/jumlah-penduduk.html. [Accessed: 22-Jan-2022].

Maulana, “Peraturan Presiden (PERPRES) Nomor 71 Tahun 2015,” 2015. [Online]. Available: https://peraturan.bpk.go.id/Home/Details/41814/perpres-no-71-tahun-2015.

I. Permadi, A. K. Nugroho, M. R. Rachmat, P. S. Informatika, F. Universitas, and J. Soedirman, “Prediksi Jumlah Hasil Panen Merica Menggunakan Fuzzy,” vol. 3, no. 1, pp. 177–182, 2022.

E. Kurniawan, H. Wibawanto, and D. A. Widodo, “Implementasi Metode Backpropogation dengan Inisialisasi Bobot Nguyen Widrow untuk Peramalan Harga Saham,” J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 1, p. 49, 2019, doi: 10.25126/jtiik.201961904.

A. S. Rachman, I. Cholissodin, and M. A. Fauzi, “Peramalan Produksi Gula Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Pada PG Candi Baru Sidoarjo Adi,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 4, pp. 1683–1689, 2018.

N. Nikentari, H. Kurniawan, N. Ritha, and D. Kurniawan, “Optimasi Jaringan Syaraf Tiruan Backpropagation Dengan Particle Swarm Optimization Untuk Prediksi Pasang Surut Air Laut,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 605, 2018, doi: 10.25126/jtiik.2018551055.

A. Pujianto, K. Kusrini, and A. Sunyoto, “Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 157, 2018, doi: 10.25126/jtiik.201852631.

A. Wanto, “Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Jumlah Kemiskinan,” Klik - Kumpul. J. Ilmu Komput, vol. 5, no. 1, p. 61, 2018.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform. Sink., vol. 2, no. 2, pp. 37–43, 2017.

S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 1, p. 34, 2017, doi: 10.30645/ijistech.v1i1.4.

A. P. Windarto and S. Lubis, Muhammad Ridwan, “Implementasi JST Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional Deangan Backpropagation,” vol. 5, no. 4, pp. 411–418, 2018, doi: 10.25126/jtiik.201854767.

I. S. Purba and A. Wanto, “Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation,” Techno.Com, vol. 17, no. 3, pp. 302–311, 2018, doi: 10.33633/tc.v17i3.1769.

M. S, W. SC, and H. RJ, Forecasting Methods and Applications, Third Edit. New Jersey: John Willey & Sons, Inc, 2008.

D. Jauhari, A. Himawan, and C. Dewi, “Prediksi Distribusi Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Di PDAM Kota Malang,” J. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, p. 83, 2016, doi: 10.25126/jtiik.201632155.

G. Airlangga, A. Rachmat, and D. Lapihu, “Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 3, pp. 1367–1375, 2019, doi: 10.12928/TELKOMNIKA.V17I3.11768.

Y. Sari, E. S. Wijaya, A. R. Baskara, and R. S. D. Kasanda, “PSO optimization on backpropagation for fish catch production prediction,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 2, pp. 776–782, 2020, doi: 10.12928/TELKOMNIKA.V18I2.14826.

N. Parveen, S. Zaidi, and M. Danish, “Development of SVR-based model and comparative analysis with MLR and ANN models for predicting the sorption capacity of Cr(VI),” Process Saf. Environ. Prot., no. Vi, 2017, doi: 10.1016/j.psep.2017.03.007

Published
2022-06-29
How to Cite
[1]
A. Irianti, P. H. Rantelinggi, A. Taufik, N. Zulkarnaim, and S. Cokrowibowo, “IMPLEMENTATION OF BACKPROPAGATION ARTIFICIAL NEURAL NETWORK FOR FOOD PRICE PREDICTION IN MAJENE CENTRAL MARKET”, J. Tek. Inform. (JUTIF), vol. 3, no. 3, pp. 681-688, Jun. 2022.