APPLICATION OF MULTI-CRITERIA PROMETHEE METHOD TO ASSIST CHARACTER SELECTION IN THE ENDLESS RUNNER GAME
Abstract
The endless runner game is one of the most popular game genres, but selecting the optimal character for different map challenges poses a significant problem for players. In this context, this research was conducted to help select characters in the endless runner game using the PROMETHEE method. This selection is recommended based on the weight and difficulty of each map which varies, including the rice field map, road map and alley map. The implementation of calculating character recommendations uses the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) method with the highest score as the best ranking. Rank suitability can be determined by comparing the PROMETHEE method with the TOPSIS method on 15 characters alternatives with 6 criteria. As a result, the PROMETHEE method has significant value, but some still have the same best ranking as the TOPSIS method. Furthermore, usability testing was carried out on 57 respondents using the System Usability Scale (SUS) with an overall score from the evaluation of 78,8. The final score obtained based on the acceptance scale was included in the category suitable for use.
Downloads
References
Statista Market Forecast, “Video Games - Indonesia | Statista Market Forecast.” Accessed: Aug. 15, 2023. [Online]. Available: https://www.statista.com/outlook/dmo/digital-media/video-games/indonesia
D. Cao, “Game design patterns in endless mobile minigames,” Digitala Vetenskapliga Arkivet. Malmö högskola/Teknik och samhälle, p. 73, 2016.
D. A. Wachnata, “Pengaruh Pengembangan Elemen Narrative pada Serious Game Genre Endless-Runner dalam Meningkatkan Efektifitas Edukasi Bahaya Merokok pada Siswa SMA,” 2023.
M. A. Ghani, A. B. Pohan, D. Gunawan, and Y. Saputra, “Penerapan Game Edukasi 3D Endless Runner Berbasis Android Sebagai Media Belajar Matematika Anak,” Infotek: Jurnal Informatika dan Teknologi, vol. 7, no. 1, pp. 288–298, 2024.
M. B. Nendya and D. Redono, “Pocong Rush: Endless Runner Game Based On Finite State Machine,” JOINCS (Journal of Informatics, Network, and Computer Science), vol. 5, no. 1, pp. 14–20, 2022.
M. A. Muslim, E. M. A. Jonemaro, and M. A. Akbar, “Penerapan Procedural Content Generation untuk Perancangan Level pada 2D Endless Runner Game menggunakan Genetic Algorithm,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 5, pp. 4406–4414, 2019.
A. Darmawan, E. M. A. Jonemaro, and T. Afirianto, “Penerapan Dynamic Audio Pada 2D Endless Runner Game Menggunakan Pure Data,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 5, pp. 4142–4147, 2019.
M. S. Yazir, E. T. Tosida, and L. Karlitasari, “Endless Run Based Medicinal Plant Educational Game Development,” International Journal of Global Operations Research, vol. 3, no. 2, pp. 64–73, 2022.
W. Yonggui and Z. Jundong, “Hybrid Recommendation Algorithm Combining Project Importance and Prediction Score,” in 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), IEEE, 2023, pp. 670–676.
H. J. Pramana, T. Mufizar, D. S. Anwar, and I. Septianingrum, “Sistem Pendukung Keputusan Penilaian Kinerja Guru Dengan Metode AHP dan PROMETHEE,” IT (INFORMATIC TECHNIQUE) JOURNAL, vol. 10, no. 1, p. 87, Apr. 2022, doi: 10.22303/it.10.1.2022.87-99.
J. P. Brans and Y. De Smet, “PROMETHEE methods,” in Multiple Criteria Decision Analysis, vol. 233, Springer New York LLC, 2016, pp. 187–219. doi: 10.1007/978-1-4939-3094-4_6.
S. Rafi, W. Yu, M. A. Akbar, A. Alsanad, and A. Gumaei, “Prioritization Based Taxonomy of DevOps Security Challenges Using PROMETHEE,” IEEE Access, vol. 8, pp. 105426–105446, 2020, doi: 10.1109/ACCESS.2020.2998819.
P. Kumar Patnaik, S. Kumar Mishra, and A. Tara Ashish, “Ranking of fiber reinforced composite materials using PSI and PROMETHEE method,” 2020.
F. Dammak, L. Baccour, and A. M. Alimi, “Intuitionistic Fuzzy PROMETHEE II Technique for Multi-criteria Decision Making Problems Based on Distance and Similarity measures,” 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8, 2020.
S. Mohdiwale, M. Sahu, G. R. Sinha, and V. Bajaj, “Automated Cognitive Workload Assessment Using Logical Teaching Learning-Based Optimization and PROMETHEE Multi-Criteria Decision Making Approach,” IEEE Sens J, vol. 20, no. 22, pp. 13629–13637, Nov. 2020, doi: 10.1109/JSEN.2020.3006486.
T. Nie and H. Yu, “Research on Green Suppliers Selection Based on Hesitant Fuzzy Linguistic PROMETHEE Method,” in 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering, AUTEEE 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 77–81. doi: 10.1109/AUTEEE50969.2020.9315537.
Y. M. Arif, S. Harini, S. M. S. Nugroho, and M. Hariadi, “An Automatic Scenario Control in Serious Game to Visualize Tourism Destinations Recommendation,” IEEE Access, vol. 9, pp. 89941–89957, 2021, doi: 10.1109/ACCESS.2021.3091425.
I. Porokhnenko, P. Polezhaev, and A. Shukhman, “Machine Learning Approaches to Choose Heroes in Dota 2,” 2019.
Y. Shen, J. Zhou, W. Lin, and Z. Feng, “A Deep Learning Supported Sequential Recommendation Mechanism for Ban-Pick in MOBA Games,” 2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence (SEAI), 2022.
L. Zhang, C. Xu, Y. Gao, Y. Han, X. Du, and Z. Tian, “Improved Dota2 Lineup Recommendation Model Based on a Bidirectional LSTM,” 2020.
F. Mandita and B. Kusumo Jati, “Application of Finite State Machine in the 3D Game ‘Virus Hunter,’” Jurnal Ilmu Komputer dan Desain Komunikasi Visual, vol. 7, no. 2, 2022.
Copyright (c) 2024 Alfina Nurrahma, Fresy Nugroho, I.G.P. Asto Buditjahjanto, Dwi Pebrianti, Jehad A.H. Hammad, Moch Fachri, Tri Mukti Lestari, Dian Maharani, Aji Bagas Prakasa
This work is licensed under a Creative Commons Attribution 4.0 International License.