FORECASTING OF YAMAHA MOTORCYCLE SALES USING THE WEIGHTED MOVING AVERAGE (WMA) WEB-BASED

  • Juli Mayani Syahputri Hasibuan Program Studi Sistem Informasi, STMIK Royal Kisaran, Indonesia
  • Raja Tama Andri Agus Program Studi Sistem Informasi, STMIK Royal Kisaran, Indonesia
  • Rohminatin Program Studi Sistem Informasi, STMIK Royal Kisaran, Indonesia
Keywords: Forecasting, Yamaha Motorcycle Sales, WMA

Abstract

UD Dunia Sakti Kisaran is a business engaged in the sale of Yamaha motorcycles. Existing activities in the company include stock purchase transactions and sales transactions. The problem that occurs in the company is that stock purchase transactions often have difficulty in determining how much stock to buy for the next period. This results in frequent shortages of stock or even a lot of stock remaining so that it cannot meet customer needs and the accumulation of goods in the warehouse for a long period of time. Sales predictions made by the company are only based on estimates, resulting in increased storage in the warehouse, and increased maintenance costs. To meet consumer needs, the company has not used a mathematical model in estimating the amount of demand for Yamaha motorcycles in the future. Problems like this make activities at UD Dunia Sakti Kisaran less effective in the process of selling and buying stock. To overcome this, a forecasting system is made using the web-based Weighted Moving Average (WMA) method using the PHP programming language and MySQL database. The forecasting system that is designed can provide convenience in forecasting sales of Yamaha motorcycles at UD Dunia Sakti Kisaran in the coming period using the Weighted Moving Average method. By using the WMA method, the average error results obtained for the types of Yamaha NMAX, VIXION, LEXI, XSR, FREEGO and GEAR motorcycles are with an error rate or MAPE value ranging from 19.22%-31.11%, meaning that the model's capability the resulting forecast is feasible/adequate.

Downloads

Download data is not yet available.

References

A. Ahmad Dan Y. I. Kurniawan, “Sistem Pendukung Keputusan Pemilihan Pegawai Terbaik Menggunakan Simple Additive Weighting Decision Support System For Best Employee Selection Using,” J. Teknik Informatika., Vol. 1, No. 2, Hal. 101–108, 2020.

D. P. Lestari and R. Panday, “Analisis Forecasting Jumlah Wisatawan Mancanegara Di Provinsi Bali Dengan Metode Least Square,” hal. 1–11, 2020.

R. Septyawan, “Analisis Peramalan Kebutuhan Energi Listrik PLN Area Batam Menggunakan Metode Regresi Linear,” pp. 1–59, 2018.

A. Purba, “Perancangan Aplikasi Peramalan Jumlah Calon Mahasiswa Baru yang mendaftar menggunakan Metode Single Exponential Smoothing (Studi Kasus: Fakultas Agama Islam UISU),” J. Ris. Komput., vol. 2, no. 6, pp. 8–12, 2015.

D. Heryanto and I. Solikin, “Peramalan Stock Motor Pada PT Thamrin Brothers Cabang Tugu Mulyo Menggunakan Weighted Moving Average (WMA),” vol. 6, no. 1, pp. 14–25, 2015.

W. Puiji and D. Lasut, “Aplikasi Peramalan Persediaan Bahan Baku Kain Dengan Metode Algoritma Naive Bayes Berbasis Website Pada PT Viore,” Algor, vol. 1, no. 2, pp. 37–43, 2020, [Online]. Available: https://jurnal.ubd.ac.id/index.php/algor/article/view/327.

A. Kumila, B. Sholihah, E. Evizia, N. Safitri, and S. Fitri, “Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan,” JTAM | J. Teor. dan Apl. Mat., vol. 3, no. 1, p. 65, 2019, doi: 10.31764/jtam.v3i1.764.

T. Hendriani, M. Yamin, and A. P. Dewi, “Sistem Peramalan Persediaan Obat Dengan Metode Weight Moving Average Dan Reorder Point (Studi Kasus: Puskesmas Soropia),” semanTIK, vol. 2, no. 2, pp. 207–214, 2017.

M. Ngantung, A. H. Jan, A. Peramalan, P. Obat, M. Ngantung, and A. H. Jan, “Analisis Peramalan Permintaan Obat Antibiotik Pada Apotik Edelweis Tatelu,” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 7, no. 4, pp. 4859–4867, 2019, doi: 10.35794/emba.v7i4.25439.

Haliq and F. Susanto, “Rancang Bangun Sistem Informasi Apotek Berbasis Client Server Pada Apotek An Nur Kotabumi,” Teknol. Komput. dan Sist. Informas, vol. 02, no. 03, pp. 110–114, 2019.

L. H. Laisina, M. a. . Haurissa, and Z. Hatala, “Sistem Informasi Data Jemaat GPM Gidion Waiyari Ambon dan Jemaat GPM Halong Anugerah Ambon,” J. Simetrik, vol. 8, no. 2, pp. 139–144, 2018.

F. Sulianta, Teknik Perancangan Arsitektur Sistem Informasi. Yogyakarta: CV.ANDI OFFSET, 2017.

R. Fajri and T. M. Johan, “Implementasi Peramalan Double Exponential Smoothing Pada Kasus Kekerasan Anak Di Pusat Pelayanan Terpadu Pemberdayaan Perempuan Dan Anak,” J. ECOTIPE, vol. 4, no. 2, pp. 6–13, 2017, doi: 10.33019/ecotipe.v4i2.6.

P. Jana, “Aplikasi Triple Exponential Smoothing Untuk Forecasting Jumlah Penduduk Miskin,” J. Deriv. J. Mat. dan Pendidik. Mat., vol. 3, no. 2, pp. 76–82, 2020, doi: 10.31316/j.derivat.v3i2.719.

I. Setiawan, “Jurnal Teknik Informatika, Vol. 13, No. 3, Agustus 2021,” Ranc. Bangun Apl. Peramalan Persediaan Stok Barang Menggunakan Metod. Weight. Mov. Aver. Pada Toko Barang XYZ, vol. 13, no. 3, hal. 1–9, 2021.

A. Nasution, “Forecasting Produksi Karet Menggunakan Metode Weighted Moving Average,” vol. 9986, no. September, 2018

Published
2022-04-25
How to Cite
[1]
J. M. Syahputri Hasibuan, R. T. A. Agus, and Rohminatin, “FORECASTING OF YAMAHA MOTORCYCLE SALES USING THE WEIGHTED MOVING AVERAGE (WMA) WEB-BASED ”, J. Tek. Inform. (JUTIF), vol. 3, no. 2, pp. 405-420, Apr. 2022.