PUBLIC SENTIMENT ANALYSIS ON ELECTRIC CARS USING MACHINE LEARNING ALGORITMS

  • Rigger Damaiarta Tejayanda Information Enginering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Bayu Prasetyo Information Enginering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Muhamad Agus Faisal Information Enginering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Rakha Abigael Information Enginering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Tatang Rohana Information Enginering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Cici Emilia Sukmawati Information Enginering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: Electric Car, Sentiment Analysis, Support Vector Machine, TikTok

Abstract

The presence of electric vehicles has generated diverse opinions among the public, as widely discussed on social media. The lack of understanding about electric vehicle innovation can influence their perception. Issues such as infrastructure, high prices, pollution concerns, and adaptation to new technology present challenges for automotive companies in their innovation efforts. This study aims to analyze public sentiment towards electric vehicles through comments on the TikTok platform, which can serve as a reference for companies in evaluating and developing electric vehicle innovations. Six different classification algorithms were tested to determine the most effective and accurate one. The methods used include data collection of comments, pre-processing, data processing through stemming, tokenization, and stopwords removal techniques, as well as labeling and modeling stages. The results of the study show that Support Vector Machine are the most superior algorithms with the highest accuracy of 90%. This research provides new insights into public perception of electric cars and the effectiveness of various sentiment analysis algorithms in the context of social media.

Downloads

Download data is not yet available.

References

C. L. K. Yamamura, H. Takiya, C. A. S. Machado, J. C. C. Santana, J. A. Quintanilha, and F. T. Berssaneti, “Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process,” Sustain., vol. 14, no. 10, 2022, doi: 10.3390/su14106064.

Y. Pratama, D. T. Murdiansyah, and K. M. Lhaksmana, “Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis,” J. Media Inform. Budidarma, vol. 7, no. 1, pp. 529–535, 2023, doi: 10.30865/mib.v7i1.5575.

A. Santoso, A. Nugroho, and A. S. Sunge, “Analisis Sentimen Tentang Mobil Listrik Dengan Metode Support Vector Machine Dan Feature Selection Particle Swarm Optimization,” J. Pract. Comput. Sci., vol. 2, no. 1, pp. 24–31, 2022, doi: 10.37366/jpcs.v2i1.1084.

P. G. Aryanti and I. Santoso, “Analisis Sentimen Pada Twitter Terhadap Mobil Listrik Menggunakan Algoritma Naive Bayes,” IKRA-ITH Inform. J. Komput. dan Inform., vol. 7, no. 2, pp. 133–137, 2023, [Online]. Available: https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/2821

A. F. Gandajati and L. P. Mahyuni, “Kendaraan listrik di mata gen y: faktor apa yang menjelaskan minat belinya?,” Forum Ekon. J. Ekon. Manaj. dan Akunt., vol. 24, no. 4, pp. 717–723, 2022, doi: 10.30872/jfor.v24i4.10436.

A. Sri Widagdo et al., “Analisis Sentimen Mobil Listrik di Indonesia Menggunakan Long-Short Term Memory (LSTM),” J. Fasilkom, vol. 13, no. 3, pp. 416–423, 2023.

A. Karimah et al., “Analisis Sentimen Komentar Video Mobil Listrik Di Platform youtube dengan metode naive bayes,” vol. 8, no. 1, pp. 767–773, 2024.

F. N. Alin, M. hafid totohendarto, and M. Rafi Muttaqin, “Analisis Sentimen Terhadap Kendaraan Listrik Pada Platform Twitter Menggunakan Metode Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1989–1994, 2023, doi: 10.36040/jati.v7i3.7023.

W. Nai et al., “A Comprehensive Review of Driving Style Evaluation Approaches and Product Designs Applied to Vehicle Usage-Based Insurance,” Sustain., vol. 14, no. 13, 2022, doi: 10.3390/su14137705.

A. K. S. Ong et al., “Purchasing Intentions Analysis of Hybrid Cars Using Random Forest Classifier and Deep Learning,” World Electr. Veh. J., vol. 14, no. 8, 2023, doi: 10.3390/wevj14080227.

A. S. Putra, D. Anubhakti, and L. L. Hin, “Penerapan Algoritma K-Nearest Neighbor Untuk Analisis Sentimen Pengguna Twitter Terhadap Kebijakan Subsidi Kendaraan Listrik,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 2, no. 2, pp. 736–744, 2023, [Online]. Available: http://senafti.budiluhur.ac.id/index.php/senafti/article/view/871%0Ahttps://senafti.budiluhur.ac.id/index.php/senafti/article/download/871/549

S. A. H. Bahtiar, “Perbandingan Naïve Bayes dan Logistic Regression dalam Sentiment Analysis pada Review Marketplace menggunakan Rating- Based Labeling,” Univ. Islam Indones., 2023, [Online]. Available: dspace.uii.ac.id/123456789/46497

N. Zelina and A. Afiyati, “Analisis Sentimen Ulasan Pengguna Aplikasi M- Banking Menggunakan Algoritma Support Vector Machine dan Decision Tree,” vol. 7, no. 1, pp. 31–37, 2024.

E. Priansyah and T. Sutabri, “Analisis Sentimen Berbasis Naïve Bayes Pada Media Sosial Twitter Terhadap Hasil Pemilu Indonesia 2024,” IJM Indones. J. Multidiscip., vol. 2, pp. 128–138, 2024, [Online]. Available: https://journal.csspublishing/index.php/ijm

A. N. Huzna, I. Nurhayati, A. E. Saputri, M. Huda, and Qomarul, “ANALISIS SENTIMEN TERHADAP MOBIL LISTRIK DI INDONESIA PADA TWITTER : PENERAPAN NAÏVE BAYES CLASSIFIER UNTUK MEMAHAMI OPINI PUBLIK,” vol. 14, no. 2, pp. 87–93, 2024.

J. Muliawan and E. Dazki, “Sentiment Analysis of Indonesia’S Capital City Relocation Using Three Algorithms: Naïve Bayes, Knn, and Random Forest,” J. Tek. Inform., vol. 4, no. 5, pp. 1227–1236, 2023, doi: 10.52436/1.jutif.2023.4.5.1436.

A. F. Riyadi, F. R. Rahman, M. A. Nofa Pratama, M. K. Khafidli, and H. Patria, “Pengukuran Sentimen Sosial Terhadap Teknologi Kendaraan Listrik: Bukti Empiris di Indonesia,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 2, p. 141, 2021, doi: 10.36448/expert.v11i2.2171.

R. Riskawati, F. Fatihanursari, I. Iin, and A. Rizki Rinaldi, “Penerapan Metode Naïve Bayes Classifier Pada Analisis Sentimen Aplikasi Gopay,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 346–353, 2024, doi: 10.36040/jati.v8i1.8699.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.

F. Matheos Sarimole and K. Kudrat, “Analisis Sentimen Terhadap Aplikasi Satu Sehat Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 3, pp. 783–790, 2024, doi: 10.55338/saintek.v5i3.2702.

W. Yulita, E. D. Nugroho, and M. H. Algifari, “Sentiment Analysis on Public Opinion About the Covid-19 Vaccine Using the Naïve Bayes Classifier Algorithm,” Jdmsi, vol. 2, no. 2, pp. 1–9, 2021.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

M. M. Mutoffar, M. Naseer, and A. Fadillah, “Klasifikasi Kualitas Air Sumur Menggunakan Algoritma Random Forest,” Naratif J. Nas. Riset, Apl. dan Tek. Inform., vol. 4, no. 2, pp. 138–146, 2022, doi: 10.53580/naratif.v4i2.160.

R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.

K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.24076/joism.2021v3i1.341.

Y. A. Pratama, F. Budiman, S. Winarno, and D. Kurniawan, “Analisis Optimasi Algoritma Decision Tree, Logistic Regression dan SVM Menggunakan Soft Voting,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1908–1919, 2023, doi: 10.30865/mib.v7i4.6856.

Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.

F. Fazrin, O. Nurul Prastiwi, and R. Andeswari, “Perbandingan Algoritma K-Nearest Neighbor dan Logistic Regression pada Analisis Sentimen terhadap Vaksinasi Covid-19 pada Media Sosial Twitter,” eProceedings Eng., vol. 10, no. 2, pp. 1596–1604, 2022.

A. I. Safitri, T. B. Sasongko, and U. A. Yogyakarta, “Sentiment Analysis of Cyberbullying Using Bidirectional Long short Term Memory Algorithn on Twitter,” J. Tek. Inform., vol. 5, no. 2, pp. 615–620, 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.2.1922.

W. Ningsih, B. Alfianda, R. Rahmaddeni, and D. Wulandari, “Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 556–562, 2024, doi: 10.57152/malcom.v4i2.1253.

N. Dienwati et al., “Penerapan Algoritma Naïve Bayes Dan K-Nearest Neighbor Untuk Analisis Sentimen Youtube Mengenai Intensif Mobil Listrik,” vol. 7, no. 6, pp. 3851–3857, 2023.

U. Pujianto, I. A. E. Zaeni, and K. I. Rasyida, “Comparison of Naive Bayes and Random Forests Classifier in the Classification of News Article Popularity as Learning Material,” Proc. 1st UMGESHIC Int. Semin. Heal. Soc. Sci. Humanit. (UMGESHIC-ISHSSH 2020), vol. 585, pp. 229–242, 2021, doi: 10.2991/assehr.k.211020.036.

Published
2024-08-31
How to Cite
[1]
R. Damaiarta Tejayanda, B. Prasetyo, M. A. Faisal, R. Abigael, T. Rohana, and C. E. Sukmawati, “PUBLIC SENTIMENT ANALYSIS ON ELECTRIC CARS USING MACHINE LEARNING ALGORITMS”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1129-1138, Aug. 2024.