COMPARISON OF BOOK SHOPPING PATTERNS BEFORE AND DURING THE COVID-19 PANDEMIC USING THE FP-GROWTH ALGORITHM AT ZANAFA BOOKSTORES

  • Dessi Cahyanti Sistem Informasi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Inggih Permana Sistem Informasi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
Keywords: Association Rules, Bookstore, Corona Virus (Covid-19), FP-Growth, Transaction

Abstract

The high number of active cases of the Corona virus (Covid-19) has a major impact on the trade sector, namely a decrease in sales turnover, causing a decrease in income by business actors and a decrease in people's purchasing power. This study aims to compare shopping patterns before and during the pandemic in Zanafa bookstores. The method used in the study is a qualitative approach related to the assessment of attitudes, opinions and behavior. In this study the attribute used is the name of the item / product, these attributes are categorized based on the shelves that there are 40 categories of bookshelves. Testing dataset using FP-Growth algorithm in tools with support value of 3% and confidence value of 10% and the pattern used is a pattern that has lift Ratio >1. Based on the results of the analysis, it was found that the rules before the pandemic pandemic many items were purchased simultaneously, that is, if the purchase of science would buy school books with the highest lift ratio of 2.9537, while during the pandemic many items were purchased simultaneously, that is, if the purchase of politics, it would buy the Qur'an with the highest lift ratio from the test results of 2.6165. This can be used by TBZ to get recommendations as promotional materials to increase profits and as a sales strategy on TBZ.

Downloads

Download data is not yet available.

References

F. R. Yamali and R. N. Putri, “Dampak Covid-19 Terhadap Ekonomi Indonesia,” Ekon. J. Econ. Bus., vol. 4, no. 2, p. 384, 2020.

Cholilawati and D. Suliyanthini, “Perubahan Perilaku Konsumen Selama Pandemi COVID-19,” Pendidikan, vol. IX, no. April 2020, p. 03, 2021.

N. A. Rakhmawati, A. E. Permana, A. M. Reyhan, and H. Rafli, “Analisa Transaksi Belanja Online Pada Masa Pandemi Covid-19,” J. Teknoinfo, vol. 15, no. 1, p. 32, 2021.

A. A. Rustandi, Harniati, and D. Kusnadi, “Jurnal Inovasi Penelitian,” J. Inov. Penelit., vol. 1, no. 3, pp. 599–597, 2020.

F. Kurniasih, N. Kumaladewi, and L. Katjong, “Analisa Dan Perancangan Data Mining Dengan Metode Market Basket Analysis Untuk Analisa Pola Belanja Konsumen pada Tendencies Store,” Sist. Inf., vol. 5, no. 1, pp. 1–10, 2012.

R. Wulandari and I. Mursidah, “Pola Pembelian Produk Berdasarkan Association Rule Data Mining,” Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 3, no. 1, pp. 265–270, 2019.

J. H. Friedman, “2 What is Data Mining ? 1 Introduction,” Statistics (Ber)., no. May, 1997.

G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :,” Telematika, vol. 4, no. 1, pp. 118–132, 2012.

R. Wandri and A. Hanafiah, “Analysis of Information Technology ( IT ) Goods Sales Patterns Using the FP-Growth Algorithm,” vol. 6, no. 2, pp. 130–141, 2022.

A. Akbar Ritonga, Ibnu Rasyid Munthe, Masrizal, “Jurnal Mantik Jurnal Mantik,” Mobile-Based Natl. Univ. Online Libr. Appl. Des., vol. 3, no. 2, pp. 10–19, 2019.

D. Indahsari, “Penerapan Metode Asosiasi Dengan Algoritma FP-Growth Pada Data Transaksi PT John Tampi Group,” Comput. Based Inf. Syst. J., vol. 9, no. 2, pp. 1–9, 2021.

D. Larasati, “Analisis Dan Implementasi Algoritma Fp-Growth Pada Aplikasi Smart Untuk Menentukan Market Basket Analysis Pada Usaha Retail ( Studi Kasus : Pt . X ) Analysis and Implementation of Fp-Growth Algorithm in Smart Application To Determine Market Basket Analysi,” Sist. Komput., vol. 2, no. 1, pp. 749–755, 2015.

S. Bagui, K. Devulapalli, and J. Coffey, “A heuristic approach for load balancing the FP-growth algorithm on MapReduce,” Array, vol. 7, no. July, p. 100035, 2020.

M. Kadafi, “Penerapan Algoritma FP-GROWTH untuk Menemukan Pola Peminjaman Buku Perpustakaan UIN Raden Fatah Palembang,” Matics, vol. 10, no. 2, p. 52, 2019.

L. Indah Prahartiwi, S. Informasi, S. Nusa Mandiri, J. Damai No, and W. Jati Barat Jakarta Selatan DKI Jakarta, “Pencarian Frequent Itemset pada Analisis Keranjang Belanja Menggunakan Algoritma FP-Growth,” Inf. Syst. Educ. Prof., vol. 2, no. 1, pp. 1–10, 2017.

M. R. Fadli, “Memahami desain metode penelitian kualitatif,” Humanika, vol. 21, no. 1, pp. 33–54, 2021.

F. Fitriyani, “Implementasi Algoritma Fp-Growth Menggunakan Association Rule Pada Market Basket Analysis,” J. Inform., vol. 2, no. 1, 2016.

F. X. B. Caesar and R. Somya, “Analisis Minat Beli Produk pada Toko Oleh-Oleh Khas Surabaya dengan Algoritme FP-Growth,” Seri Pros. Semin. Nas. …, pp. 5–10, 2021.

H. Jang, Y. Yang, and J. S. Park, “FP-Growth Algorithm for Discovering Region-Based Association Rule in the IoT Environment,” 2021.

A. Salam, J. Zeniarja, W. Wicaksono, and L. Kharisma, “Pencarian Pola Asosiasi Untuk Penataan Barang Dengan Menggunakan Perbandingan Algoritma Apriori Dan FP- Association Pattern Mining For Product Arrangement Using Comparison Between Apriori Algorithm And FP-Growth ( Case Study At Epo Store Distribution Stor,” vol. 23, no. 2, pp. 57–65, 2018.

Published
2022-04-25
How to Cite
[1]
D. Cahyanti and I. Permana, “COMPARISON OF BOOK SHOPPING PATTERNS BEFORE AND DURING THE COVID-19 PANDEMIC USING THE FP-GROWTH ALGORITHM AT ZANAFA BOOKSTORES ”, J. Tek. Inform. (JUTIF), vol. 3, no. 2, pp. 381-386, Apr. 2022.