COMPARISON OF NAIVE BAYES AND RANDOM FOREST METHODS IN SENTIMENT ANALYSIS ON THE GETCONTACT APPLICATION

  • Juan Pala Arisula Information System, Universitas Teknokrat Indonesia, Indonesia
  • Parjito Informatics, Universitas Teknokrat Indonesia, Indonesia
Keywords: GetContact, Naïve Bayes, Random Forest, Sentiment Analysis

Abstract

The rapid growth in the use of social media and instant messaging platform apps has significantly changed the way people communicate. One of the most popular apps is GetContact, a platform focused on identifying the phone numbers of irresponsible people and reducing the impact of spam calls. In cases like this, sentiment analysis is important to understand user responses to the service. In performing sentiment analysis, there are two classification methods that will be used, namely the Naive Bayes and Random Forest methods. This research utilizes the SMOTE technique to handle data imbalance, and the results show that the application of SMOTE successfully improves classification accuracy. The Random Forest model performed better than Naive Bayes, with 80% accuracy, 84% precision, 77% recall, and 80% F1 score for positive sentiments, while Naive Bayes achieved 77% accuracy, 79% precision, 79% recall, and 79% F1 score. Although Random Forest is superior in precision, recall , and F1 score for positive sentiments, it performs almost on par with Naive Bayes in classifying negative sentiments, with 76% precision , 84% recall, and 80% F1 score for Random Forest, and 76% precision, 76% recall , and 76% F1 score for Naive Bayes. This shows that both models provide similar results in identifying negative sentiment overall.

Downloads

Download data is not yet available.

References

F. Nufairi, N. Pratiwi, And F. Herlando, “Analisis Sentimen Pada Ulasan Aplikasi Threads Di Google Play Store Menggunakan Algoritma Support Vector Machine,” Jipi (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), Vol. 9, No. 1, Pp. 339–348, Feb. 2024, Doi: 10.29100/Jipi.V9i1.4929.

T. M. Siregar, A. S. Margareta, B. Berliana, D. Simanungkalit, L. H. Gultom, and Y. S. Pasaribu, “Analisis Perbandingan Pertumbuhan Pengguna Internet Di Sumatera: Faktor-Faktor Yang Mempengaruhinya ”, Innovative, vol. 3, no. 6, pp. 10672–10680, Dec. 2023.

P. : Jurnal, K. Masyarakat, A. Yani, And B. P. Kesehatan, “Pemanfaatan Teknologi Dalam Bidang Kesehatan Masyarakat Utilization Of Technology In The Health Of Community Health,” Artikel Xii, Vol. 8, No.1 2018.

S. Fitri, “Dampak Positif Dan Negatif Sosial Media Terhadap Perubahan Sosial Anak,” Naturalistic : Jurnal Kajian Penelitian Pendidikan Dan Pembelajaran, Vol. 1, No. 2, Pp. 118–123, Apr. 2017, Doi: 10.35568/Naturalistic.V1i2.5.

M. Wicaksono Aji Bawono, S. Dwi Utomo, And S. Kasman, “Machine Learning Sentiment Analysis In Cyber Threat Intelligence Recommendation System,” International Journal On Information And Communication Technology (Ijoict), Vol. 9, No. 2, Pp. 75–85, 2023, Doi: 10.21108/Ijoict.V9i2.849.

C. K. Widada, “Mengambil Manfaat Media Sosial Dalam Pengembangan Layanan,” Journal Of Documentation And Information Science, Vol. 2, No. 1, Pp. 23–30, Feb. 2018, Doi: 10.33505/Jodis.V2i1.130.

J. Handoko, K. Kevin, P. Paulus, And Z. Salsabila, “Sistem Deteksi Nomor Telepon Dan Rekening Bank Terindikasi Penipuan Berbasis Aplikasi Android Dan Web,” J. Sifo Mikroskil, Vol. 23, No. 2, Pp. 183–196, 2022.

N. E. Sakinah, “Analisis User Experience Pada Aplikasi,” Jurnal Politeknik Negeri Jakarta, Vol. 28, No. 3, P. 16, 2019.

N. Dwi Santri, T. Riza Zarzani, And S. Asmi Hasibuan, “Kajian Yuridis Hukum Aplikasi Get Contact Berdasarkan Undang-Undang Perlindungan Konsumen Dan Peraturan Nomor 20 Tahun 2016,” Jurnal Rectum: Tinjauan Yuridis Penanganan Tindak Pidana, Vol. 4, No. 2, Pp. 480–487, 2022.

D. G. Nugroho, Y. H. Chrisnanto, and A. Wahana, “ANALISIS SENTIMEN PADA JASA OJEK ONLINE MENGGUNAKAN METODE NAÏVE BAYES,” Nugroho | Prosiding Sains Nasional dan Teknologi, ,Vol.1,No1,2016.https://doi.org/10.36499/psnst.v1i1.1526

S. Rita, D. Indrayana, and A. Pambudi, “Penggunaan Support Vector Machine Untuk Analisis Sentimen Ulasan Aplikasi Truecaller Dan Getcontact,” Bit, Vol. 20, No. 2,2023.https://journal.budiluhur.ac.id/index.php/bit/article/view/2493

R. Julianto, E. D. Bintari, And I. Indrianti, “Analisis Sentimen Layanan Provider Telepon Seluler Pada Twitter Menggunakan Metode Naïve Bayesian Classification,” Journal Of Big Data Analytic And Artificial Intelligence, Vol. 3, No. 1, Pp. 23–30, 2017.

D. Science, I. Technology, And D. Analytics, “Journal Of Dinda,” Vol. 4, No. 1, Pp. 8–13, 2024.

A. Nugroho And Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes Menggunakan Genetic Algorithm Dan Bagging,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 5, No. 3, Pp. 504–510, Jun. 2021, Doi: 10.29207/Resti.V5i3.3067.

H. Pramoedyo, D. Ariyanto, And N. N. Aini, “Comparison Of Random Forest And Naïve Bayes Methods For Classifying And Forecasting Soil Texture In The Area Around Das Kalikonto, East Java,” Barekeng: Jurnal Ilmu Matematika Dan Terapan, Vol. 16, No. 4, Pp. 1411–1422, Dec. 2022, Doi: 10.30598/Barekengvol16iss4pp1411-1422.

S. Rita, D. Indrayana, And A. Pambudi, “Penggunaan Support Vector Machine Untuk Analisis Sentimen Ulasan Aplikasi Truecaller Dan Getcontact,” Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), Vol. 20, No. 2, P. 131, 2023, Doi: 10.36080/Bit.V20i2.2493.

Y. Ansori And K. F. H. Holle, “Perbandingan Metode Machine Learning Dalam Analisis Sentimen Twitter,” Jurnal Sistem Dan Teknologi Informasi (Justin), Vol. 10, No. 4, P. 429, 2022, Doi: 10.26418/Justin.V10i4.51784.

F. A. Larasati, D. E. Ratnawati, And B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana Dengan Metode Random Forest,” … Teknologi Informasi Dan …, Vol. 6, No. 9, Pp. 4305–4313, 2022.

N. Ramadhani And N. Fajarianto, “Sistem Informasi Evaluasi Perkuliahan Dengan Sentimen Analisis Menggunakan Naïve Bayes Dan Smoothing Laplace,” Jurnal Sistem Informasi Bisnis, Vol. 10, No. 2, Pp. 228–234, 2020, Doi: 10.21456/Vol10iss2pp228-234.

N. M. Farhan And B. Setiaji, “Indonesian Journal Of Computer Science,” Indonesian Journal Of Computer Science, Vol. 12, No. 2, Pp. 284–301, 2023.

D. Faroek, M. Yusuf, And G. Syatauw, “Sentiment Analysis Of The Popularity Of Parties Supporting The 2024 Presidential Candidates On Twitter Using The Naive Bayes Classifier Algorithm,” Antivirus : Jurnal Ilmiah Teknik Informatika, Vol. 17, No. 2, Pp. 216–227, 2023, Doi: 10.35457/Antivirus.V17i2.3261.

K. S. Putri, I. R. Setiawan, And A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technologia : Jurnal Ilmiah, Vol. 14, No. 3, P. 227, 2023, Doi: 10.31602/Tji.V14i3.11259.

D. Ahmad Dzulhijjah, H. Sanjaya, A. Said Wahyudi Hidayat, A. Yulistia Alwanda, and E. Utami, “Perbandingan Metode Random Forest dan KNN pada Analisis Sentimen Twitter,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 12, no. 3, pp. 767–772, Jul. 2023, doi: 10.30591/smartcomp.v12i3.5106.

A. S. Rahayu, A. Fauzi, And R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (Svm) Pada Analisis Sentimen Spotify,” Jurnal Sistem Komputer Dan Informatika (Json), Vol. 4, No. 2, P. 349, 2022, Doi: 10.30865/Json.V4i2.5398.

R. Azhar And M. F. Wijayanto, “Analisis Sentimen Di Twitter: Mengungkap Persepsi Dan Emosi Publik Seputar Konflik Palestina-Israel,” Stains (Seminar Nasional …, Vol. 3, Pp. 118–124, 2024.

F. M. Fathoni, C. A. Putra, And A. L. Nurlaili, “Klasifikasi Penyakit Daun Anggur Menggunakan Metode K-Nearest Neighbor Berdasarkan Gray Level Co-Occurrence Matrix,” Biner: Jurnal Ilmiah Informatika Dan Komputer, Vol. 3, No. 1, Pp. 8–15, 2024.

A. Fatunnisa And H. Marcos, “Prediksi Kelulusan Tepat Waktu Siswa Smk Teknik Komputer Menggunakan Algoritma Random Forest Prediction Of On-Time Graduation For Computer Engineering Vocational School Students Using The Random Forest Algorithm,” Vol. 14, No. April, Pp. 101–111, 2024.

R. Leonardo And J. Pratama, “Perbandingan Metode Random Forest Dan Naïvebayes Dalam Prediksi Keberhasilan Klien Telemarketing,” Jurnal Penelitian Teknik Informatika, Vol. 3, No. 123, Pp. 455–459, 2020.

A. Miftahusalam, A. F. Nuraini, A. A. Khoirunisa, And H. Pratiwi, “Perbandingan Algoritma Random Forest, Naïve Bayes, Dan Support Vector Machine Pada Analisis Sentimen Twitter Mengenai Opini Masyarakat Terhadap Penghapusan Tenaga Honorer,” Seminar Nasional Official Statistics, Vol. 2022, No. 1, Pp. 563–572, 2022, Doi: 10.34123/Semnasoffstat.V2022i1.1410.

Published
2024-10-20
How to Cite
[1]
J. P. Arisula and P. Parjito, “COMPARISON OF NAIVE BAYES AND RANDOM FOREST METHODS IN SENTIMENT ANALYSIS ON THE GETCONTACT APPLICATION”, J. Tek. Inform. (JUTIF), vol. 5, no. 5, pp. 1221-1230, Oct. 2024.