SENTIMENT ANALYSIS OF PUBLIC OPINION ON THE RIGHT OF INQUIRY IN INDONESIA IN 2024 USING THE SUPPORT VECTOR MACHINE (SVM) METHOD
Abstract
Research on the right of inquiry refers to public responses on twitter social media related to the 2024 elections. The right of inquiry is a right used in investigations. There are a lot of public opinions about the right of inquiry that are discussed on twitter social media that convey their various opinions or criticisms of government policies towards the 2024 elections. Based on Law No. 17/2014, the right of inquiry of the House of Representatives is regulated in Article 20A of the 1945 Constitution, which regulates the right of inquiry of the House of Representatives. Sentiment analysis is used in this research to determine the accuracy value of public opinion which is categorized into two, namely positive and negative sentiment. In this study, the SVM method is used to identify and find the results of public opinions or responses regarding the issue of the right of inquiry in Indonesia in 2024 which is being widely under the twitter social media platform, so it is necessary to analyze the sentiment. By using the support vector machine (SVM) algorithm and word weighting using TF-IDF (term frequency-inverse document frequency). Data collection using Google Collaboratory tools with the python programming language. The data used were 2,179 tweets with the keywords "inquiry right", "DPR inquiry right", "election inquiry right". The results obtained from the SVM process with an accuracy value of 77%, negative precision value 77%, positive precision value 77%, negative recall value 57%, positive recall value 89%, positive f1-score value 66%, negative f1-score value 82%. The data that has been tested and processed has an adequate accuracy value for SVM algorithm classification using confusion matrix calculation. The results of the research conducted have been effective with the SVM method.
Downloads
References
B. Iskandar, “Analisis Putusan Mahkamah Konstitusi No. 36/PUU-XV/2017 Tentang Hak Angket Dewan Perwakilan Rakyat Terhadap Komisi Pemberantasan Korupsi,” Lex Renaissance, vol. 4, no. 2, pp. 410–431, Jul. 2019, doi: 10.20885/JLR.VOL4.ISS2.ART12.
S. Sumartini and J. Arifin, “Fungsi Hak Angket Dewan Perwakilan Rakyat Untuk Melakukan Penyelidikan Terhadap Pelaksanaan Undang-Undang,” Yustitia, vol. 6, no. 1, pp. 23–44, Apr. 2020, doi: 10.31943/YUSTITIA.V6I1.97.
H. Sabar, R. Tinambunan, D. Dicky, E. Prasetio, J. K. Surabaya, and J. Timur, “Rekonstruksi Konstitusi Dalam Regional Representative Dewan Perwakilan Daerah Terhadap Fungsi Legislatif,” Masalah-Masalah Hukum, vol. 48, no. 3, pp. 266–274, Jul. 2019, doi: 10.14710/MMH.48.3.2019.266-274.
A. Novilistiana and A. Riwanto, “Pelaksanaan Fungsi Hak Angket Dewan Perwakilan Rakyat Republik Indonesia (Studi Kasus Hak Angket Tentang Komisi Pemberantasan Korupsi),” Res Publica: Jurnal Hukum Kebijakan Publik, vol. 4, no. 2, pp. 130–146, Dec. 2020, doi: 10.20961/RESPUBLICA.V4I2.45704.
I. Aris, I. Amir, and S. Amrianto, “Konstitusionalitas Hak Angket Dewan Perwakilan Rakyat (DPR) Terhadap Komisi Pemberantasan Korupsi (KPK),” Al-Adalah: Jurnal Hukum dan Politik Islam, vol. 4, no. 2, pp. 135–158, Oct. 2019, doi: 10.35673/AJMPI.V4I2.436.
M. L. (Muhammad) Harsono, Y. (Yuris) Alkhalifi, N. (Nurajijah) Nurajijah, and W. (Windu) Gata, “Analisis Sentimen Stakeholder Atas Layanan HAIDJPB pada Media Sosial Twitter dengan Menggunakan Metode Support Vector Machine dan Naïve Bayes,” Infoman's, vol. 14, no. 1, p. 414142, 2020, doi: 10.33481/INFOMANS.V14I1.126.
S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia,” Jurnal Mantik, vol. 3, no. 1, pp. 236–241, Jun. 2019, Accessed: Mar. 25, 2024. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/173
I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes And Support Vector Machine,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 4, pp. 807–814, Aug. 2022, doi: 10.20884/1.JUTIF.2022.3.4.292.
A. Nursalim and R. Novita, “Sentiment Analysis Of Comments On Google Play Store, Twitter And Youtube To The Mypertamina Application With Support Vector Machine,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1305–1312, Jun. 2023, doi: 10.52436/1.JUTIF.2023.4.6.1059.
A. M. Pravina, I. Cholisoddin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2789–2797, Jan. 2019, Accessed: Mar. 16, 2024. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4793
S. K. Dirjen et al., “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 802–808, Aug. 2021, doi: 10.29207/RESTI.V5I4.3308.
N. Shafiya, N. Salam, A. A. Supianto, and A. R. Perdanakusuma, “Analisis Sentimen Opini Mahasiswa Terhadap Saran Kuesioner Penilaian Kinerja Dosen dengan Menggunakan TF-IDF dan K-Nearest Neighbor,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 6, pp. 6148–6156, Jul. 2019, Accessed: Mar. 20, 2024. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5649
R. Puspitasari, Y. Findawati, and M. A. Rosid, “Sentiment Analysis Of Post-Covid-19 Inflation Based On Twitter Using The K-Nearest Neighbor And Support Vector Machine Classification Methods,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 4, pp. 669–679, Aug. 2023, doi: 10.52436/1.JUTIF.2023.4.4.801.
E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” Jurnal Transformatika, vol. 18, no. 1, pp. 71–80, Jul. 2020, doi: 10.26623/TRANSFORMATIKA.V18I1.2317.
A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” (JurTI) Jurnal Teknologi Informasi, vol. 3, no. 2, pp. 179–184, Dec. 2019, doi: 10.36294/JURTI.V3I2.1077.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” INSYST: Journal of Intelligent System and Computation, vol. 1, no. 1, pp. 43–49, Aug. 2019, doi: 10.52985/INSYST.V1I1.36.
S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, R. A. Supono, and M. A. Suprayogi, “Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 911–918, Oct. 2021, doi: 10.29207/RESTI.V5I5.3403.
W. Sofiya and E. B. Setiawan, “Fine-Grained Sentiment Analysis In Social Media Using Gated Recurrent Unit With Support Vector Machine,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 3, pp. 511–519, Jun. 2023, doi: 10.52436/1.JUTIF.2023.4.3.855.
A. Muhadi and A. Octaviano, “Penerapan Data Mining Untuk Prediksi Hasil Keuntungan Lelang Mesin X-Ray Tahun 2020 Dengan Metode K-Nearest Neighbor (Studi Kasus : PT.Ramadika Mandiri),” Jurnal Informatika Multi, vol. 1, no. 2, pp. 126–136, Mar. 2023, Accessed: Mar. 19, 2024. [Online]. Available: https://jurnal.publikasitecno.id/index.php/multi/article/view/19
I. Ahmad, S. Samsugi, and Y. Irawan, “Penerapan Augmented Reality Pada Anatomi Tubuh Manusia Untuk Mendukung Pembelajaran Titik Titik Bekam Pengobatan Alternatif,” Jurnal Teknoinfo, vol. 16, no. 1, p. 46, Jan. 2022, doi: 10.33365/JTI.V16I1.1521.
S. Hikmawan et al., “Sentimen Analisis Publik Terhadap Joko Widodo terhadap wabah Covid-19 menggunakan Metode Machine Learning,” Jurnal Kajian Ilmiah, vol. 20, no. 2, pp. 167–176, May 2020, doi: 10.31599/JKI.V20I2.117.
S. Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti, M. Dwifebri Purbolaksono, M. Irvan Tantowi, and A. Imam Hidayat, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, Apr. 2021, doi: 10.29207/RESTI.V5I2.3008.
S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, and A. S. Aribowo, “Text-Preprocessing Model Youtube Comments in Indonesian,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 4, pp. 648–654, Aug. 2020, doi: 10.29207/RESTI.V4I4.2035.
A. E. Budiman and A. Widjaja, “Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, Dec. 2020, doi: 10.28932/JUTISI.V6I3.2892.
M. ’ Ruf et al., “Data Mining Untuk Klasifikasi Produk Menggunakan Algoritma K-Nearest Neighbor
Pada Toko Online,” Prosiding SISFOTEK, vol. 5, no. 1, pp. 141–145, Sep. 2021, Accessed: Mar. 19, 2024. [Online]. Available: https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/273
S. Sarina and A. M. Tanniewa, “Implementasi Algoritma Support Vector Learning Terhadap Analisis Sentimen Penggunaan Aplikasi Tiktok Shop Seller Center,” Prosiding SISFOTEK, vol. 7, no. 1, pp. 165–170, Oct. 2023, Accessed: Mar. 19, 2024. [Online]. Available: https://seminar.iaii.or.id/index.php/SISFOTEK/article/view/404
I. G. T. Suryawan and N. M. A. R. Devi, “Implementasi Metode Moora Dalam Menentukan Kelayakan Penerima Bantuan Langsung Tunai Covid-19,” Jurnal Teknologi Informasi dan Komputer, vol. 9, no. 2, Jan. 2023, Accessed: Mar. 19, 2024. [Online]. Available: https://jurnal.undhirabali.ac.id/index.php/jutik/article/view/2349
I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes And Support Vector Machine,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 4, pp. 807–814, Aug. 2022, doi: 10.20884/1.JUTIF.2022.3.4.292.
Copyright (c) 2024 Dicky Fernanda Sebastian, Heni Sulistiani, Auliya Rahman Isnain
This work is licensed under a Creative Commons Attribution 4.0 International License.