COMPARISON OF NAÏVE BAYES AND INFORMATION GAIN ALGORITHMS IN CYBERBULLYING SENTIMENT ANALYSIS ON TWITTER

  • Dinda Septia Ningsih Information System, Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Indonesia
  • Ryan Randy Suryono Information System, Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Indonesia
Keywords: Cyberbullying, Generation Z, Information Gain, Naïve Bayes

Abstract

In the current digital era, cyberbullying is very easy to do because access to various social media platforms is very easy to obtain. Generation Z is a generation born in the era of digital technology advancement, being one of the parties that plays a role in the increasing cases of cyberbullying. The twitter social media platform is one of the platforms that is often used as a place for cyberbullying in Indonesia. With the alarming impact, this research aims to analyze cyberbullying cases on twitter. By comparing Naïve Bayes and Information Gain algorithms, this research will provide accuracy results from tweet data containing cyberbullying content. The dataset used comes from twitter with the time span of collecting the dataset is from January 05, 2024 to January 25, 2024. The dataset is then processed to produce a clean dataset that is ready to be tested using both algorithms. In this study, testing the two algorithms using the K-fold Cross Validation technique resulted in variations in each test. In testing both algorithms, an accuracy level is obtained that indicates how successful the model is in making predictions. In simple terms, this accuracy assesses how effective the model is in predicting cyberbullying sentiment in datasets from Indonesian twitter. Testing the Naïve Bayes algorithm obtained an accuracy of 92.3%. Testing the Information Gain algorithm has an accuracy of 97.8%. From the results obtained, it can be concluded that the Information Gain algorithm gets higher accuracy than the Naïve Bayes algorithm for cyberbullying sentiment analysis on Indonesian twitter.

Downloads

Download data is not yet available.

References

F. N. Eleanora And R. Al Adawiah, “Perundungan Dunia Maya (Cyberbullying) Dan Upaya Preventif Di Kalangan Siswa Smk Bangun Persada Bekasi,” Jurnal Abdi Masyarakat Indonesia, Vol. 1, No. 2, Pp. 203–208, Oct. 2021, Doi: 10.54082/Jamsi.67.

D. Riswanto And R. Marsinun, “Perilaku Cyberbullying Remaja Di Media Sosial,” Analitika, Vol. 12, No. 2, Pp. 98–111, Dec. 2020, Doi: 10.31289/Analitika.V12i2.3704.

J. Pengabdian Kepada Masyarakat Hal And I. Fardian Anshori, “Jurnal Sosial & Abdimas Fenomena Cyber Bullying Dalam Kehidupan Remaja”, [Online]. Available: Http://Ejurnal.Ars.Ac.Id/Index.Php/Jsa

“Apjii Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang,” Https://Apjii.Or.Id/Berita/D/Apjii-Jumlah-Pengguna-Internet-Indonesia-Tembus-221-Juta-Orang.

D. Persetujuan Bersama, “Dewan Perwakilan Rakyat Republik Indonesia Dan Presiden Republik Indonesia.” Accessed: Feb. 09, 2024. [Online]. Available: Https://Peraturan.Bpk.Go.Id/Details/37582/Uu-No-19-Tahun-2016

M. I. Djamzuri And A. Putra Mulyana, “Fenomena Cyberbullying Pembiaran Juvenile Deliquency Dalam Teknologi Media Baru,” Jurnal Ilmu Sosial Dan Pendidikan (Jisip), Vol. 7, No. 1, Pp. 2598–9944, 2023, Doi: 10.58258/Jisip.V7i1.4801/Http.

N. Made Gita Dwi Purnamasari, M. Ali Fauzi, And L. Shinta Dewi, “Identifikasi Tweet Cyberbullying Pada Aplikasi Twitter Menggunakan Metode Support Vector Machine (Svm) Dan Information Gain (Ig) Sebagai Seleksi Fitur,” 2018. [Online]. Available: Http://J-Ptiik.Ub.Ac.Id

Y. Guo, S. Das, S. Lakamana, And A. Sarker, “An Aspect-Level Sentiment Analysis Dataset For Therapies On Twitter,” Data Brief, Vol. 50, Oct. 2023, Doi: 10.1016/J.Dib.2023.109618.

A. Wildan Attabi’, L. Muflikhah, And M. A. Fauzi, “Penerapan Analisis Sentimen Untuk Menilai Suatu Produk Pada Twitter Berbahasa Indonesia Dengan Metode Naïve Bayes Classifier Dan Information Gain,” 2018. [Online]. Available: Http://J-Ptiik.Ub.Ac.Id

S.-J. Son, M. S. Do, G. Choi, And H.-K. Nam, “Identifying Research Trends In Avian Migration Tracking In Korea Using Text Mining,” J Asia Pac Biodivers, Dec. 2023, Doi: 10.1016/J.Japb.2023.12.001.

M. Qamal And W. Fuadi, “Analisis Sentimen Toko Online Menggunakan Algoritma Naive Bayes Classifier.”

J. Elektronik Et Al., “Implementasi Algoritma Naive Bayes Classifier (Nbc) Dan Information Gain Untuk Mendeteksi Ddos,” 2019, [Online]. Available: Https://Research.Unsw.Edu.Au/Projects/Unsw-Nb15-Dataset.

T. Dzulkarnain, D. E. Ratnawati, B. Rahayudi, And P. Korespondensi, “Penggunaan Metode Naïve Bayes Classifier Pada Analisis Sentimen Penilaian Masyarakat Terhadap Pelayanan Rumah Sakit Di Malang The Use Of The Naïve Bayes Classifier Method In Sentiment Analysis Of The Community’s Assessment Of Hospital Services In Malang,” Vol. 10, No. 7, 2023, Doi: 10.25126/Jtiik.2023107979.

A. Nursalim And R. Novita, “Sentiment Analysis Of Comments On Google Play Store, Twitter And Youtube To The Mypertamina Application With Support Vector Machine,” Jurnal Teknik Informatika (Jutif), Vol. 4, No. 6, Pp. 1305–1312, 2023, Doi: 10.52436/1.Jutif.2023.4.6.1059.

M. Yunus, M. Husni, And M. M. Mufadhdhal, “Klasifikasi Sentimen Terhadap Badan Penyelenggara Jaminan Sosial (Bpjs) Pada Media Sosial Twitter Menggunakan Naive Bayes,” Smatika Jurnal, Vol. 11, No. 02, Pp. 81–91, Dec. 2021, Doi: 10.32664/Smatika.V11i02.577.

P. Sofyan Zakaria, R. Julianto, And R. Surya Bernada, “Implementasi Naive Bayes Menggunakan Python Dalam Klasifikasi Data.” [Online]. Available: Https://Jurnalmahasiswa.Com/Index.Php/Biikma

R. Fajar, S. Program, P. Rekayasa, N. Lunak, And R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” Vol. 3, No. 1.

C. Destitus, “Support Vector Machine Vs Information Gain: Analisis Sentimen Cyberbullying Di Twitter Indonesia,” Ultima Infosys, Vol. Xi, No. 2, P. 107, 2020.

D. Darwis, E. Shintya Pratiwi, A. Ferico, And O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” 2020.

P. Kumala Sari And R. Randy Suryono, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” 2024.

I. Nur Fakhri And R. Febrian Umbara, “Analisis Sentimen Pada Kuisioner Kepuasan Terhadap Layanan Dan Fasilitas Kampus Universitas Dengan Menggunakan Klasifikasi Support Vector Machine (Svm)”.

B. Indra Kusuma And A. Nugroho, “Cyberbullying Detection On Twitter Uses The Support Vector Machine Method,” Jurnal Teknik Informatika (Jutif), Vol. 5, No. 1, Pp. 11–17, 2024, Doi: 10.52436/1.Jutif.2024.5.1.809.

Published
2024-07-29
How to Cite
[1]
Dinda Septia Ningsih and R. R. Suryono, “COMPARISON OF NAÏVE BAYES AND INFORMATION GAIN ALGORITHMS IN CYBERBULLYING SENTIMENT ANALYSIS ON TWITTER”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1085-1091, Jul. 2024.