PREDICTION SYSTEM OF RICE CONSUMPTION NEEDS USING WEIGHTED MOVING AVERAGE METHOD

  • Renisa Maulidifa Informatics Engineering, Science and Technology Faculty, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Puspa Miladin Nuraida Safitri A. Informatics Engineering, Science and Technology Faculty, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Ririen Kusumawati Informatics Engineering, Science and Technology Faculty, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
Keywords: Forecasting, Prediction System, Rice Consumption Needs, Weighted Moving Average

Abstract

Most of Indonesia's population works in the agricultural sector. The main agricultural commodity is paddy which will be processed into rice. Despite being the fourth largest rice producer in the world, Indonesia continues to import rice. This is due to the rice deficit, declining rice field harvest areas, and the high consumption and demand for rice in the country. Malang Regency is one of the regions in Indonesia that faces challenges in fulfilling rice needs due to the increasing population and decreasing agricultural land due to land conversion. Therefore, this research aims to predict rice demand to ensure the availability of sufficient supply. This research implements the Weighted Moving Average (WMA) method to find the most optimal period and weight with the smallest MAPE value. The results show that WMA using a 3-month period and weights 0.1, 0.1, 0.8 is the best. From the test results, the rice demand obtained MAPE of 7.15% with the prediction results reaching 20,552.25 tons and the planting area obtained MAPE of 22.96% with the prediction results reaching 3842.70 ha for the next period. Further analysis was conducted to determine the efficiency of the available planting area whether it can sufficient the needs of rice. The results show that the expected rice production from the available planting area in Malang Regency can still sufficient the rice needs of the population. This research has also successfully implemented the method on a website-based system to facilitate data processing and prediction process with faster and more accurate results.

Downloads

Download data is not yet available.

References

W. A. Saputro, I. Firdauzi, and F. A. Harahap, “Potensi Cadangan Pangan Pokok Masyarakat di Kabupaten Banyumas,” Proceedings Series on Physical & Formal Sciences, vol. 5, pp. 218–223, Aug. 2023, doi: 10.30595/pspfs.v5i.726.

A. R. Rahmat and M. Taufiq, “Analisis faktor-faktor yang mempengaruhi impor beras di Indonesia,” Online) KINERJA: Jurnal Ekonomi dan Manajemen, vol. 19, no. 2, p. 195, 2022, doi: 10.29264/jkin.v19i2.10924.

Jiuhardi, “Analisis kebijakan impor beras terhadap peningkatan kesejahteraan petani di Indonesia,” Jurnal Ekonomi, Keuangan dan Manajemen, vol. 19, no. 1, pp. 98–110, 2023.

S. E. Rahayu and H. Febriaty, “Analisis Perkembangan Produksi Beras Dan Impor Beras Di Indonesia,” Proseding Seminar Nasional Kewirausahaan, vol. 1, no. 1, pp. 219–226, 2019, doi: 10.30596/snk.v1i1.3613.

F. Abdullah, S. Imran, and A. Rauf, “Analisis Ketersediaan Beras Di Kabupaten Gorontalo Selang Tahun 2021-2030,” AGRINESIA, vol. 6, no. 3, pp. 187–197, 2022, doi: 10.37046/agr.v6i3.16138.

D. A. Mardhika, B. Darma Setiawan, and R. C. Wihandika, “Penerapan Algoritma Support Vector Regression Pada Peramalan Hasil Panen Padi Studi Kasus Kabupaten Malang,” vol. 3, no. 10, pp. 9402–9412, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

M. Kafil, “Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” Jurnal Mahasiswa Teknik Informatika, vol. 3, no. 2, 2019.

W. Hernando and Diana, “Analisis Dan Peramalan (Forecast) Dalam Penjualan Sepeda Motor Yamaha Pada Pt. Lautan Teduh,” Bina Darma Conference on Computer Science, pp. 325–336, 2020.

D. Putu, Y. Ardiana, Luciana, and H. Loekito, “Sistem Informasi Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average,” JUTIK, vol. 4, no. 1, pp. 71–79, 2018.

S. Agustian and H. Wibowo, “Perbandingan Metode Moving Average untuk Prediksi Hasil Produksi Kelapa Sawit,” in SNTIKI, 2019, pp. 156–162. [Online]. Available: https://www.infosawit.com/news/6026/5-provinsi-produsen-terbesar-sawit-nasional

A. Rahayu, A. Lattu, and M. Mupaat, “Analysis Of Product Stock Inventory Forecasting Using Weighted Moving Average Method,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 6, pp. 1631–1638, Dec. 2022, doi: 10.20884/1.jutif.2022.3.6.421.

A. Lusiana and P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X,” Industri Inovatif : Jurnal Teknik Industri, vol. 10, no. 1, pp. 11–20, 2020.

M. Rizqi, A. Cahya Prihandoko, and N. El Maidah, “Implementasi Metode Weighted Moving Average Untuk Sistem Peramalan Penjualan Markas Coffee,” Informatics Journal, vol. 6, no. 3, 2021.

S. M. Igirisa, “Prediksi Harga Cabai Di Kota Gorontalo Menggunakan Metode Weighted Moving Average,” vol. 1, no. 2, 2022.

I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, Nov. 2020, doi: 10.33633/joins.v5i2.3900.

L. Sari Marita and I. Darwati, “Prediksi Persediaan Barang Menggunakan Metode Weighted Moving Average, Exponential Smoothing dan Simple Moving Average,” Jurnal TEKNO KOMPAK, vol. 16, no. 1, pp. 56–68, 2022.

S. Kusuma et al., “Implementasi Metode Weighted Moving Average Pada Sistem Prediksi Stok Tembakau Lokal Berbasis Web (Studi Kasus Outlet Progressive Nicotiana),” Coding : Jurnal Komputer dan Aplikasi, vol. 09, no. 03, pp. 400–410, 2021.

Urai Icha Anjani, Cucu Suhery, and Uray Ristian, “Prediksi Permintaan Produk Kopi Bubuk Menggunakan Metode Double Exponential Smoothing Berbasis Website (Studi Kasus: Pt. Fastrata Buana),” Jurnal Komputer dan Aplikasi, vol. 08, no. 01, pp. 93–101, 2020.

Y. Astuti, B. Novianti, T. Hidayat, and D. Maulina, “Penerapan Metode Single Moving Average Untuk Peramalan Penjualan Mainan Anak,” in SENSITIF, 2019, pp. 253–261.

Rini Oktaviani, Dwi Marisa Midyanti, and Syamsul Bahri, “Implementasi Metode Regresi Linear Untuk Prediksi Kebutuhan Energi Listrik Pln Rayon Sintang Berbasis Website,” Jurnal Komputer dan Aplikasi, vol. 09, pp. 119–136, 2021.

M. Azman Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” JURNAL SISTEM DAN INFORMATIKA, pp. 36–45, 2019.

D. Anggun Febrianti, R. Purwatiningsih, and dan Eko Soemarjono, “Analisis Nilai Tambah Gabah Pada Proses Produksi Beras Organik Gapoktan Al Barokah Kabupaten Bondowoso,” FORAGRI : Jurnal Ilmu Pertanian, vol. 2, no. 1, pp. 40–49, 2022.

Atin Hasanah, K. Kusrini, and K. Kusnawi, “Comparison of Least Square and Quadratic Methods on Prediction the Number of New Student Applicants,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1359–1386, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1124

Published
2024-07-29
How to Cite
[1]
R. Maulidifa, Puspa Miladin Nuraida Safitri A., and Ririen Kusumawati, “PREDICTION SYSTEM OF RICE CONSUMPTION NEEDS USING WEIGHTED MOVING AVERAGE METHOD”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1073-1083, Jul. 2024.