ANALYSIS OF RAW MATERIAL INVENTORY PREDICTION FOR PLASTIC ORE USING A COMBINATION OF CAUSALITY AND TIME SERIES METHODS: A CASE STUDY IN A TEXTILE INDUSTRY COMPANY

  • Frangky Rawung Informatics, Electrical Technology Faculty, Institut Teknologi Sepuluh Nopember, Indonesia
  • Agus Budi Raharjo Informatics, Electrical Technology Faculty, Institut Teknologi Sepuluh Nopember, Indonesia
  • Diana Purwitasari Informatics, Electrical Technology Faculty, Institut Teknologi Sepuluh Nopember, Indonesia
Keywords: bilstm, causality, inventory, mlr, prediction, time series

Abstract

Raw material inventory is a valuable company asset in production activities. Inadequate or excessive availability can lead to production failures or cost wastage. This research aims to predict raw material inventory based on factors such as initial stock, receipts, usage, final stock, and differences in usage. A causality-based approach with Multiple Linear Regression (MLR) is used as the basis, complemented by a time series data approach that processes data trends using the Bidirectional Long Short-Term Memory (BiLSTM) algorithm. The prediction results from both models are then combined using the harmonic mean. This research utilizes a dataset of raw material inventory and applies the Root Mean Squared Error (RMSE) and R-squared (R²) performance parameters for model evaluation. The research is expected to provide useful information for companies in managing their raw material inventory and improving the efficiency of their production processes. Results show that, in the BiLSTM deep learning model, Polyethylene Terephthalate (PET) raw materials yielded an RMSE of 6.53 and an R² of 0.93. These results indicate that PET raw materials have a higher predictive value than other materials.

Downloads

Download data is not yet available.

References

E. Lesmana, B. Subartini, Riaman, and D. A. Jabar, “Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L,” IOP Conf. Ser. Mater. Sci. Eng., vol. 332, p. 012015, Mar. 2018, doi: 10.1088/1757-899X/332/1/012015.

P. L. Miranda, R. Morabito, and D. Ferreira, “Optimization model for a production, inventory, distribution and routing problem in small furniture companies,” Top, vol. 26, no. 1, pp. 30–67, May 2018, doi: 10.1007/s11750-017-0448-1.

W. Pawasarn and B. Niamnoy, “Inventory reduction of requisition process in raw material warehouse: A case study of rice cooker factory,” Proc. 2018 5th Int. Conf. Bus. Ind. Res. Smart Technol. Next Gener. Information, Eng. Bus. Soc. Sci. ICBIR 2018, pp. 413–418, 2018, doi: 10.1109/ICBIR.2018.8391232.

D. Meilani, A. Andiningtias, and D. Fatrias, “Decision support system for inventory control of raw material (Case study: PT Suwarni Agro Mandiri Plant Pariaman, Indonesia),” in 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, Apr. 2018, pp. 6–10, doi: 10.1109/IEA.2018.8387063.

J. Ali Khan, S. Deng, and M. H. A.K. Khan, “An Empirical Analysis of Inventory Turnover Performance Within a Local Chinese Supermarket,” Eur. Sci. Journal, ESJ, vol. 12, no. 34, p. 145, Dec. 2016, doi: 10.19044/esj.2016.v12n34p145.

R. S. Oktapiadi, K. Komariah, and D. Jhoansyah, “Analisis Inventory Turn Over dalam Meningkatkan Profitabilitas pada Matahari Department Store Tbk,” J. Ekon. dan Bisnis, vol. 20, no. 2, p. 62, Jul. 2019, doi: 10.30659/ekobis.20.2.62-71.

J. Chancasanampa-Mandujano, K. Espinoza-Poblete, J. Sotelo-Raffo, J. M. Alvarez, and C. Raymundo-Ibañez, “Inventory Management Model Based on a Stock Control System and a Kraljic Matrix to Reduce Raw Materials Inventory,” in Proceedings of the 2019 5th International Conference on Industrial and Business Engineering, Sep. 2019, pp. 33–38, doi: 10.1145/3364335.3364382.

B. Scholkopf et al., “Toward Causal Representation Learning,” Proc. IEEE, vol. 109, no. 5, pp. 612–634, May 2021, doi: 10.1109/JPROC.2021.3058954.

N. Sokolovska, O. Permiakova, S. K. Forslund, and J.-D. Zucker, “Using Unlabeled Data to Discover Bivariate Causality with Deep Restricted Boltzmann Machines,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 17, no. 1, pp. 358–364, Jan. 2020, doi: 10.1109/TCBB.2018.2879504.

S. Sulistyono and W. Sulistiyowati, “Peramalan Produksi dengan Metode Regresi Linier Berganda,” PROZIMA (Productivity, Optim. Manuf. Syst. Eng., vol. 1, no. 2, pp. 82–89, Dec. 2017, doi: 10.21070/prozima.v1i2.1350.

S. Shakhla, B. Shah, N. Shah, V. Unadkat, and P. Kanani, “Stock price trend prediction using multiple linear regression,” Int. J. Eng. Sci. Invent., vol. 7, no. 10, pp. 29–33, 2018, [Online]. Available: www.ijesi.org.

M. F. A. Azis, F. Darari, and M. R. Septyandy, “Time Series Analysis on Earthquakes Using EDA and Machine Learning,” in 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Oct. 2020, vol. 15, no. 2, pp. 405–412, doi: 10.1109/ICACSIS51025.2020.9263188.

A. Sinaga and E. Astuty, “Forecasting Raw Material Inventory Using the Single Moving Average and Supplier Selection Using the Analytical Hierarchy Process,” in 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Apr. 2021, pp. 1–6, doi: 10.1109/AIMS52415.2021.9466081.

S. Elsworth and S. Güttel, “Time Series Forecasting Using LSTM Networks: A Symbolic Approach,” 2020, doi: https://doi.org/10.48550/arXiv.2003.05672.

A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, p. 132306, Mar. 2020, doi: 10.1016/j.physd.2019.132306.

A. Palkar, M. Deshpande, S. Kalekar, and S. Jaswal, “Demand Forecasting in Retail Industry for Liquor Consumption using LSTM,” in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Jul. 2020, pp. 521–525, doi: 10.1109/ICESC48915.2020.9155712.

T. Gao, Y. Chai, and Y. Liu, “Applying long short term momory neural networks for predicting stock closing price,” in 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Nov. 2017, pp. 575–578, doi: 10.1109/ICSESS.2017.8342981.

S. Etemadi and M. Khashei, “Etemadi multiple linear regression,” Meas. J. Int. Meas. Confed., vol. 186, p. 110080, Dec. 2021, doi: 10.1016/j.measurement.2021.110080.

S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting Time Series,” in 2019 IEEE International Conference on Big Data (Big Data), Dec. 2019, pp. 3285–3292, doi: 10.1109/BigData47090.2019.9005997.

P. Aggarwal and A. K. Sahani, “Comparison of Neural Networks for Foreign Exchange Rate Prediction,” in 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Nov. 2020, pp. 415–419, doi: 10.1109/ICIIS51140.2020.9342733.

F. Qian and X. Chen, “Stock Prediction Based on LSTM under Different Stability,” in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Apr. 2019, pp. 483–486, doi: 10.1109/ICCCBDA.2019.8725709.

E. Sreehari and S. Srivastava, “Prediction of Climate Variable using Multiple Linear Regression,” in 2018 4th International Conference on Computing Communication and Automation (ICCCA), Dec. 2018, pp. 1–4, doi: 10.1109/CCAA.2018.8777452.

A. Hrp, “Peramalan Produk Ragum Dengan Metode Causal dan Time Series,” Talent. Conf. Ser. Energy Eng., vol. 3, no. 2, pp. 219–223, 2020, doi: 10.32734/ee.v3i2.996.

K. Siregar and L. D. Etaniya, “Analisa Peramalan Penjualan Ragum dengan Metode Time Series dan Causal Tahun 2020 di Provinsi Sumatera Barat,” Talent. Conf. Ser. …, 2020, [Online]. Available: https://talentaconfseries.usu.ac.id/ee/article/view/1089.

B. Siregar, E. B. Nababan, A. Yap, U. Andayani, and Fahmi, “Forecasting of raw material needed for plastic products based in income data using ARIMA method,” in 2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Oct. 2017, pp. 135–139, doi: 10.1109/ICEEIE.2017.8328777.

X. Ding, Z. Zhang, X. Chen, and Y. Huang, “A novel pooling strategy for Full Reference Image Quality Assessment based on harmonic means,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2015, pp. 1672–1676, doi: 10.1109/ICASSP.2015.7178255.

Z. Hu, Y. Zhao, and M. Khushi, “A Survey of Forex and Stock Price Prediction Using Deep Learning,” Appl. Syst. Innov., vol. 4, no. 1, p. 9, Feb. 2021, doi: 10.3390/asi4010009.

Published
2024-04-28
How to Cite
[1]
Frangky Rawung, Agus Budi Raharjo, and Diana Purwitasari, “ANALYSIS OF RAW MATERIAL INVENTORY PREDICTION FOR PLASTIC ORE USING A COMBINATION OF CAUSALITY AND TIME SERIES METHODS: A CASE STUDY IN A TEXTILE INDUSTRY COMPANY”, J. Tek. Inform. (JUTIF), vol. 5, no. 1, pp. 331-338, Apr. 2024.