CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI SIDIK JARI MENGGUNAKAN RESNET-50

  • Novelita Dwi Miranda Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom, Indonesia
  • Ledya Novamizanti Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom, Indonesia
  • Syamsul Rizal Teknik Telekomunikasi, Fakultas Teknik Elektro, Universitas Telkom, Indonesia
Keywords: CLAHE, CNN, Henry Classification System, Resnet-50, Sidik Jari

Abstract

Pengenalan sidik jari merupakan bagian dari teknologi biometrik. Klasifikasi sidik jari yang paling popular adalah Henry classification system. Henry membagi sidik jari berdasarkan garis polanya menjadi lima kelas yaitu arch (A), tented arch (T), left loop (L), right loop (R), dan whorl (W). Penelitian ini menggunakan Convolutional Neural Network (CNN) dengan model arsitektur Residual Network-50 (ResNet-50) untuk mengembangkan sistem klasifikasi sidik jari. Dataset yang digunakan diperoleh dari website National Institute of Standards and Technology (NIST) berupa citra sidik jari grayscale 8-bit. Hasil pengujian menunjukkan bahwa pemrosesan awal Contrast Limited Adaptive Histogram Equalization (CLAHE) dalam model CNN dapat meningkatkan performa akurasi dari sistem klasifikasi sidik jari sebesar 11,79%. Pada citra tanpa CLAHE diperoleh akurasi validasi 83,26%, sedangkan citra dengan CLAHE diperoleh akurasi validasi 95,05%.

Downloads

Download data is not yet available.

References

R. Clarke, “Roger Clarke ’ s Human Id in Info. Systems Human Identification in Information Systems : Management Challenges and Public Policy Issues Introduction Roger Clarke ’ s Human Id in Info . Systems Introduction Human Identity and Human Identification * Human ,” pp. 1–20, 1994.

N. A. Alias and N. H. M. Radzi, “Fingerprint classification using Support Vector Machine,” Proc. 2016 5th ICT Int. Student Proj. Conf. ICT-ISPC 2016, pp. 105–108, 2016, doi: 10.1109/ICT-ISPC.2016.7519247.

J. M. Shrein, “Fingerprint classification using convolutional neural networks and ridge orientation images,” 2017 IEEE Symp. Ser. Comput. Intell. SSCI 2017 - Proc., vol. 2018-Janua, no. c, pp. 1–8, 2018, doi: 10.1109/SSCI.2017.8285375.

X. Guo, F. Wu, and X. Tang, “Fingerprint pattern identification and classification,” ICNC-FSKD 2018 - 14th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., no. 1984, pp. 1045–1050, 2018, doi: 10.1109/FSKD.2018.8687199.

P. Nahar, S. Tanwani, and N. S. Chaudhari, “Fingerprint Classification Using Resnet50,” Int. J. Res. Anal. Rev., vol. 5, no. 04, pp. 1521–1535, 2018.

M. Ghafoor et al., “Fingerprint Identification With Shallow Multifeature View Classifier,” IEEE Trans. Cybern., vol. PP, pp. 1–13, 2019, doi: 10.1109/TCYB.2019.2957188.

W. S. Jeon and S. Y. Rhee, “Fingerprint pattern classification using convolution neural network,” Int. J. Fuzzy Log. Intell. Syst., vol. 17, no. 3, pp. 170–176, 2017, doi: 10.5391/IJFIS.2017.17.3.170.

NIST Special Database 4, “NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (FIGS),”2019. https://www.nist.gov/srd/nist-special-database-4 (accessed Maret. 11, 2020).

S. R. Borra, G. J. Reddy, and E. S. Reddy, “A broad survey on fingerprint recognition systems,” Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, pp. 1428–1434, 2016, doi: 10.1109/WiSPNET.2016.7566372.

P. N. Andono, Pengolahan Citra Digital. Penerbit Andi, Yogyakarta, 2017.

S. A. Syakry, M. Syahronir, and M. Mulyadi, “Perbandingan Performa Segmentasi Citra Sidik Jari Menggunakan Deteksi Tepi Metode Sobel Dengan Metode Canny,” J. Infomedia, vol. 1, no. 2, pp. 35–40, 2016, doi: 10.30811/.v1i2.332.

G. F. C. Campos, S. M. Mastelini, G. J. Aguiar, R. G. Mantovani, L. F. de Melo, and S. Barbon, “Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization,” Eurasip J. Image Video Process., vol. 2019, no. 1, 2019, doi: 10.1186/s13640-019-0445-4.

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” in Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, 2018, vol. 2018-Janua, pp. 1–6, doi: 10.1109/ICEngTechnol.2017.8308186.

X. Ou et al., “Moving Object Detection Method via ResNet-18 with Encoder-Decoder Structure in Complex Scenes,” IEEE Access, vol. 7, pp. 108152–108160, 2019, doi: 10.1109/ACCESS.2019.2931922.

L. A. Andika, H. Pratiwi, and S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum,” Indones. J. Stat. Its Appl., vol. 3, no. 3, pp. 331–340, 2019, doi: 10.29244/ijsa.v3i3.560.

M. E. Abdulfattah, L. Novamizanti, S. Rizal, "Super Resolution pada Citra Udara Menggunakan Convolutional Neural Network," ELKOMIKA, Vol. 8, No. 3, 2020.

Published
2020-12-08
How to Cite
[1]
N. D. Miranda, L. Novamizanti, and S. Rizal, “CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI SIDIK JARI MENGGUNAKAN RESNET-50”, J. Tek. Inform. (JUTIF), vol. 1, no. 2, pp. 61-68, Dec. 2020.