HYPERPARAMETER OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORK FOR FLOWER IMAGE CLASSIFICATION USING GRID SEARCH ALGORITHMS

  • Della Aulia Wibowo Department of Information Technology, Informatics, Engineering Faculty, Institut Teknologi Sepuluh Nopember, Indonesia
  • Nanik Suciati Department of Information Technology, Informatics, Engineering Faculty, Institut Teknologi Sepuluh Nopember, Indonesia
  • Anny Yuniarti Department of Information Technology, Informatics, Engineering Faculty, Institut Teknologi Sepuluh Nopember, Indonesia
Keywords: Convolutional Neural Network, Grid Search, Hyperparameter, Indonesian flowers image, MobileNetV2, VGG16

Abstract

Indonesia is a country with a tropical climate that greatly affects agriculture. Flowering plants are estimated to account for 25% of species in Indonesia; there are 416 families, 13,164 genera, and 295,383 species of flowering plants. Classification of profit types is a time- and knowledge-intensive job. Convolutional Neural Network (CNN) has revolutionized the field of computer vision by improving the accuracy of image, text, voice, and video recognition. This research is focused on developing a CNN model for Indonesian flower images by optimizing hyperparameters combined with a grid search algorithm and default parameters, as well as comparing two different CNN architectures, namely VGG16 and MobileNetV2. This research aims to improve the classification accuracy of Indonesian flower images by optimizing hyperparameters. The results of CNN research with hyperparameters combined with a grid search algorithm and using data augmentation resulted in MobileNetV2 as the best model. Grid search is designed to get the best value of each parameter. The performance of the grid search algorithm can produce an optimal combination of parameters, with a test accuracy of 89.62%..

Downloads

Download data is not yet available.

References

B. S. Indonesia, “Statistical Yearbook of Indonesia,” Indonesia, 2019.

S. Wirjohamidjojo dan Y. Swarinoto, Iklim kawasan Indonesia, Jakarta: Badan Meteorologi Klimatologi dan Geofisika, 2010.

E. Ekawati, Mata Pelajaran Penyerbukan dan Pemngkasan Tanaman Perkebunan, Indonesia: Kemendikbud, 2017.

T. Whitmore, K. Sidiyasa dan T. Whitmore, “Tree species enumeration of 0.5 hectare on Halmahera.,” Gardens’ Bulletin Singapore, vol. 40(1 & 2), pp. 31-34., 1987.

M. Christenhusz dan J. W. Byng, “The number of known plant species in the world and its annual increase,” Phytotaxa, vol. 261(3). pp. 201-217,2016, http://dx.doi.org/10.11646/phytotaxa.261.3.1

J. H. Yoo, H. i. Yoo, H. G. Kim, H. S. Yoon dan S. S. Han, “Optimization of Hyper-parameter for CNN Model using Genetic Algorithm,” dalam 2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Malaysia, 2019, https://doi.org/10.1109/ICECIE47765.2019.8974762

N. Mukkapati dan D. M. S. Anbarasi, “Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm,” IJCSNS International Journal of Computer Science and Network Security, vol. 22, 2022, https://doi.org/10.22937/IJCSNS.2022.22.4.14

I. Kandel dan M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312-315, 2020, https://doi.org/10.1016/j.icte.2020.04.010

Y. Yoo, “Hyperparameter optimization of deep neural network using univariate dynamic encoding algorithm for searches,” Knowledge-Based Systems, vol. 178, pp. 74-83, 2019, https://doi.org/10.1016/j.knosys.2019.04.019

N. A. K. R. Fatmawati, “Klasifikasi Penyakit Diabetes Retinopati Menggunakan Support Vector Machinedengan Algoritma Grid Search Cross-Validation,” Jurnal Riset Statistik, vol. 3,pp.79-86,2023, https://doi.org/10.29313/jrs.v3i1.1945

F. Sia dan N. S. Baco, “Hyperparameter Tuning of Convolutional Neural Network for Fresh and Rotten Fruit Recognition,” dalam 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Malaysia, 2023, https://doi.org/10.1109/IICAIET59451.2023.10291915

G. Yifei, Q. Chuxian, X. Jiexiang, M. Yixuan dan T. T. Toe, “Flower image classification based on improved convolutional neural network,” dalam 2022 12th International Conference on Information Technology in Medicine and Education (ITME), China, 2022, https://doi.org/10.1109/ITME56794.2022.00028

D. Guru, Y. S. Kumar dan S. Manjunath, “Textural features in flower classification,” Mathematical and Computer Modelling, vol. 54, pp. 1030-1036, 2011, http://dx.doi.org/10.1016/j.mcm.2010.11.032

I. A. Anjani, Y. R. Pratiwi dan N. B. Nurhuda, “Implementation of Deep Learning Using Convolutional Neural Network Algorithm for Classification Rose Flower,” International Conference on Science Education and Technology (ICOSETH) 2020, vol. 1842, 2021, http://dx.doi.org/10.1088/1742-6596/1842/1/012002

M. Fatoni dan Ernastuti, “Ornamental Plants Classification using,” MIND (Multimedia Artificial Intelligent Networking Database) Journal, vol. 8, pp. 158-172, 2023, https://doi.org/10.26760/mindjournal.v1i1.49

A. Nurhopipah dan N. A. Larasati, “CNN hyperparameter optimization using random grid coarse-to-fine,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 6, pp. 19-26, 2021, https://doi.org/10.22219/kinetik.v6i1.1185

R. L. Devi dan V. S. V, “Detection and Automated Classification of Brain Tumor Types in MRI Images using Convolutional Neural Network with Grid Search Optimization,” dalam 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), India, 2021, https://doi.org/10.1109/I-SMAC52330.2021.9640670

Prosea, Daftar flora identitas provinsi di Indonesia, Indonesia, 2011.

J. Dinkes, “Melati Gambir: Ikonik, Puspa Bangsa, Filosofis,” Indonesia, 2022.

W. Hetterscheid dan S. Ittenbach, “Everything you always wanted to know about Amorphophallus but were afraid to stick your nose into.,” Aroideana, vol. 19, pp. 7-131, 1996.

P. B. BBKSDA, “Keanekaragaman Anggrek (Orchidaceae) di region Papuasia,” Kementerian Lingkungan Hidup dan Kehutanan, Papua Barat, Indonesia, 2020.

A. Susatya, Rafflesia Pesona bunga terbesar di dunia, Bengkulu, Indonesia: Direktorat Kawasan Konservasi dan Bina Hutan Lindung, 2011.

A. Hamsa, T. Aulawi dan B. Solfan, “Perbedaan Waktu Pemanenan Terhadap Mutu Kimia Daun Sirih Merah (Piper Crocatum Ruiz & Pav),” Jurnal Pertanian Indonesia, vol. 1, p. 2, Oktober 2020.

F. Hu, F. Yao dan C. Pu, “Learning Salient Features for Flower Classification Using Convolutional Neural Network,” dalam 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), China, 2020, https://doi.org/10.1109/ICAIIS49377.2020.9194931

D. H. Hubel dan T. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” The Journal of Physiology, vol. 160, no. 1, pp. 106-154, 1962.

S. Sundhararajan, A. Pahwa dan P. Krishnaswami, “A comparative analysis of genetic algorithms and directed grid search for parametric optimization,” Engineering with computers, vol. 14, pp. 197-205, 1998.

L.-E. Pommé, R. Bourqui, R. Giot dan D. Auber, “Relative Confusion Matrix: Efficient Comparison of Decision Models,” dalam 2022 26th International Conference Information Visualisation (IV), Austria, 2022, https://doi.org/10.1109/IV56949.2022.00025

A. Jierula, S. Wang, Tae-Min dan P. Wang, “Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data,” Applied Science, 2021, http://dx.doi.org/10.3390/app11052314

P. Fränti dan R. Mariescu-Istodor, “Soft precision and recall,” Pattern Recognition Letters, vol. 167, pp. 115-121, 2023, https://doi.org/10.1016/j.patrec.2023.02.005

S. A. Hicks, I. Strümke, V. Thambawita, M. Hammou, M. A. Riegler, P. Halvorsen dan S. Parasa, “On evaluation metrics for medical applications of artificial intelligence,” Scientific Reports, vol. 12, no. 1, 2022, https://doi.org/10.1038/s41598-022-09954-8.

Published
2024-02-24
How to Cite
[1]
D. A. Wibowo, N. Suciati, and A. Yuniarti, “HYPERPARAMETER OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORK FOR FLOWER IMAGE CLASSIFICATION USING GRID SEARCH ALGORITHMS”, J. Tek. Inform. (JUTIF), vol. 5, no. 1, pp. 313-320, Feb. 2024.