FILM RECOMMENDATION USING CONTENT-BASED USING ARTIFICIAL NEURAL NETWORK METHOD AND ADAM OPTIMIZATION
Abstract
This research aims to develop a more accurate and relevant content-based film recommendation system from the Netflix and Disney+ streaming platforms using the ANN method. Movie recommendation systems are a popular solution to help users find movies that match their preferences. The ANN method develops a model to learn complex patterns from film features. Additionally, Adam optimization is used to improve the speed and accuracy of the model training process. The advantage of using an ANN is its ability to learn complex patterns and improve the performance of the recommendation system over time. Adam Optimization helps improve the speed, accuracy and quality of ANN models. From this research, researchers, based on the evaluation results using the confusion matrix, obtained an accuracy value of 88.30%, using a split ratio of 80:20 and a learning rate of 0.04469992592930794. This means that most classifications can detect correctly according to sufficient data. Combining these two methods allows the film recommendation system to provide better recommendations as more data becomes available.
Downloads
References
I. N. Anshari, “Sirkulasi Film dan Program Televisi di Era Digital: Studi Kasus Praktik Download dan Streaming melalui Situs Bajakan,” Komuniti : Jurnal Komunikasi dan Teknologi Informasi, vol. 10, no. 2, pp. 88–102, Oct. 2019, doi: 10.23917/KOMUNITI.V10I2.7125.
S. C. AISHWVARYA, “Optimasi Model Sistem Rekomendasi Film Dengan Neural Network (Studi Kasus: Platform Letterboxd),” Jan. 2023, Accessed: Jan. 18, 2024. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/42596
B. U. Tri Wahyo and A. Widya Anggriawan, “Sistem Rekomendasi Paket Wisata Se-Malang Raya Menggunakan Metode Hybrid Content Based and Collaborative,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 9, no. 1, pp. 6–13, Feb. 2015, Accessed: Jan. 20, 2024. [Online]. Available: https://jurnal.stmikasia.ac.id/index.php/jitika/article/view/96
vincent sandrya, W. Wasino, and D. Arisandi, “SISTEM REKOMENDASI FILM MENGGUNAKAN METODE MULTIPLE ATTRIBUTE UTILITY THEORY,” Computatio : Journal of Computer Science and Information Systems, vol. 6, no. 1, pp. 19–30, Jun. 2022, doi: 10.24912/COMPUTATIO.V6I1.17081.
H. D. Bhakti, “Aplikasi Artificial Neural Network (ANN) untuk Memprediksi Masa Studi Mahasiswa Program Studi Teknik Informatika Universitas Muhammadiyah Gresik,” Jurnal Eksplora Informatika, vol. 9, no. 1, pp. 88–95, Sep. 2019, doi: 10.30864/EKSPLORA.V9I1.234.
Li J, Li Y, and Li C, “A movie recommendation system based on content and collaborative filtering,” International Conference on Electronics Information and Emergency Communication (ICEIEC), vol. 9, pp. 1–4, 2019.
A. A. Suryanto, A. Muqtadir, and S. Artikel, “PENERAPAN METODE MEAN ABSOLUTE ERROR (MEA) DALAM ALGORITMA REGRESI LINEAR UNTUK PREDIKSI PRODUKSI PADI,” SAINTEKBU, vol. 11, no. 1, pp. 78–83, Feb. 2019, doi: 10.32764/SAINTEKBU.V11I1.298.
F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, vol. 10, no. 1, pp. 23–32, Apr. 2021, doi: 10.23887/JANAPATI.V10I1.31035.
M. S. Wibawa, “Pengaruh Fungsi Aktivasi, Optimisasi dan Jumlah Epoch Terhadap Performa Jaringan Saraf Tiruan,” Jurnal Sistem dan Informatika (JSI), vol. 11, no. 2, pp. 167–174, May 2017, Accessed: Jan. 20, 2024. [Online]. Available: https://jsi.stikom-bali.ac.id/index.php/jsi/article/view/129
K. Crowston, E. E. Allen, and R. Heckman, “Using natural language processing technology for qualitative data analysis,” Int J Soc Res Methodol, vol. 15, no. 6, pp. 523–543, Nov. 2012, doi: 10.1080/13645579.2011.625764.
D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, and A. Rangga, “PERBANDINGAN OPTIMASI SGD, ADADELTA, DAN ADAM DALAM KLASIFIKASI HYDRANGEA MENGGUNAKAN CNN,” JOURNAL OF SCIENCE AND SOCIAL RESEARCH, vol. 5, no. 2, pp. 244–253, Jun. 2022, doi: 10.54314/JSSR.V5I2.789.
Santoso S, Santoso D, and Arya I G N, “A hybrid recommendation system for movie selection,” International Conference on Information Management and Technology (ICIMTech), pp. 9–14, 2018.
A Hidayat, R H Wicaksono, and F Fauzi, “Movie recommendation system using collaborative filtering and genetic algorithm,” International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), vol. 6, pp. 1–6, 2019.
A. Sujjada, Somantri, A. R. Ramdani, K. Kibtiyah, M. P. Utami, and M. R. Nullah, “Prediksi Nilai Ujian Sekolah Siswa SMK Plus Padjadjaran Berbasis Web Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Jurnal Informasi dan Teknologi, pp. 151–158, Jul. 2023, doi: 10.37034/JIDT.V5I2.370.
D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
H. Februariyanti, A. D. Laksono, J. S. Wibowo, and M. S. Utomo, “IMPLEMENTASI METODE COLLABORATIVE FILTERING UNTUK SISTEM REKOMENDASI PENJUALAN PADA TOKO MEBEL,” Jurnal Khatulistiwa Informatika, vol. 9, no. 1, Jun. 2021, doi: 10.31294/JKI.V9I1.9859.
Y. Suharya et al., “Sistem Rekomendasi Untuk Toko Online Kecil Dan Menengah,” TEMATIK, vol. 8, no. 2, pp. 176–185, Dec. 2021, doi: 10.38204/TEMATIK.V8I2.683.
Bambang Tri Wahyo and Angga Anggriawan, “Sistem Rekomendasi Paket Wisata Se-Malang Raya Menggunakan Metode Hybrid Content Based and Collaborative,” Jurnal Ilmiah Teknologi Informasi Asia, pp. 6–13, Feb. 2015.
Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, Recommender Systems Handbook. Springer US, 2011. doi: 10.1007/978-0-387-85820-3.
M. Irfan, A. D. Cahyani, and F. H. R, “SISTEM REKOMENDASI: BUKU ONLINE DENGAN METODE COLLABORATIVE FILTERING,” JURNAL TEKNOLOGI TECHNOSCIENTIA, pp. 076–084, Aug. 2014, doi: 10.34151/TECHNOSCIENTIA.V7I1.612.
D. M Oktaviani, “SISTEM REKOMENDASI PENYEWAAN SOUND SYSTEM PADA UD. DYAH AUDIO BERBASIS WEB MENGGUNAKAN METODE EUCLIDEAN DISTANCE,” 2015.
S. A. Zulvian, K. Prihandani, and A. A. Ridha, “Perbandingan Metode MSD dan Cosine Similarity pada Sistem Rekomendasi Item-Based Collaborative Filtering,” INTECOMS: Journal of Information Technology and Computer Science, vol. 4, no. 2, pp. 340–347, Dec. 2021, doi: 10.31539/INTECOMS.V4I2.2781.
K. Adi, N. #1, and D. Sebastian, “Pembentukan Dataset Topik Kata Bahasa Indonesia pada Twitter Menggunakan TF-IDF & Cosine Similarity,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 4, no. 3, pp. 376–386, Dec. 2018, doi: 10.28932/jutisi.v4i3.862.
M. Fajriansyah, P. P. Adikara, and A. W. Widodo, “Sistem Rekomendasi Film Menggunakan Content Based Filtering,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 6, pp. 2188–2199, May 2021, Accessed: Jan. 02, 2024. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9163
Addini Yusmar, “Implementasi metode collaborative filtering dengan pendekatan item based untuk rekomendasi rumah makan menggunakan algoritma adjusted cosine similarity,” Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, Jan. 2020, Accessed: Jan. 02, 2024. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/55992
A. A. Maarif, “PENERAPAN ALGORITMA TF-IDF UNTUK PENCARIAN KARYA ILMIAH ,” Jurnal. Jurusan Teknik Informatika. Fakultas Ilmu Komputer. Universitas Dian Nuswantoro Semarang., 2015.
N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks,” EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, pp. 3982–3992, Aug. 2019, doi: 10.18653/v1/d19-1410.
E. R. Newton et al., “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf Ser Mater Sci Eng, vol. 324, no. 1, p. 012049, Mar. 2018, doi: 10.1088/1757-899X/324/1/012049.
H. Hartatik, S. D. Nurhayati, and W. Widayani, “Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering,” Journal Automation Computer Information System, vol. 1, no. 2, pp. 55–63, Nov. 2021, doi: 10.47134/JACIS.V1I2.8.
S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Sautomo, and H. Ferdinandus Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 99–106, Feb. 2021, doi: 10.29207/RESTI.V5I1.2815.
R. H. Bawafi, “SISTEM PREDIKSI DIAGNOSA PASIEN PENYAKIT HEPATITIS MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORK (ANN) SINGLE LAYER PERCEPTRON STUDI KASUS PUSKESMAS TAMBAK”, Accessed: Jan. 04, 2024. [Online]. Available: http://journal.umg.ac.id/index.php/indexia/article/view/3526
G. Bagas Prananta, H. A. Azzikri, C. Rozikin, and U. S. Karawang, “REAL-TIME HAND GESTURE DETECTION AND RECOGNITION USING CONVOLUTIONAL ARTIFICIAL NEURAL NETWORKS,” METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, pp. 30–34, Sep. 2023, doi: 10.46880/MTK.V9I2.1911.
F. Mustakim, F. Fauziah, and N. Hayati, “Algoritma Artificial Neural Network pada Text-based Chatbot Frequently Asked Question (FAQ) Web Kuliah Universitas Nasional,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 5, no. 4, pp. 438–446, Dec. 2021, doi: 10.35870/JTIK.V5I4.261.
W. Dyah, “Mengatasi cold-start problem menggunakan artificial neural network untuk sistem rekomendasi pada game destinasi wisata Kota Batu Etheses of Maulana Malik Ibrahim State Islamic University,” 2022, Accessed: Jan. 02, 2024. [Online]. Available: http://etheses.uin-malang.ac.id/36835/
D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, Dec. 2014, Accessed: Jan. 02, 2024. [Online]. Available: https://arxiv.org/abs/1412.6980v9
I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” 2016.
S. N. B. ALAWIYAH, “PEMODELAN MENGGUNAKAN PENDEKATAN RECURRENT NEURAL NETWORK LONG SHORT TERM MEMORY (RNNLSTM) PADA HARGA EMAS DUNIA,” Jul. 2021.
S. A. AMANIA, “KLASIFIKASI JENIS JERAWAT WAJAH MENGGUNAKAN ARSITEKTUR INCEPTION V3,” 2023.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, Sep. 2021, doi: 10.30645/J-SAKTI.V5I2.369.
F. Matematika, I. Pengetahuan, A. Dan, T. Informasi, and J. Pendidikan, “KLASIFIKASI DATA MINING DALAM MENENTUKAN PEMBERIAN KREDIT BAGI NASABAH KOPERASI,” JITEK (Jurnal Ilmiah Teknosains), vol. 1, no. 1/Nov, Nov. 2015, doi: 10.26877/JITEK.V1I1/NOVEMBER.836.
Copyright (c) 2024 Dwi Hariyansyah Riaji, Erwin Budi Setiawan
This work is licensed under a Creative Commons Attribution 4.0 International License.