PREDICTION OF 2024 PRESIDENTIAL ELECTION USING K-NN WITH METRIC APPROACHES CHEBYSHEV AND EUCLIDEAN BASED ON TWITTER DATA INVESTIGATION

  • Steven Ryan Darmawan Informatics, Universitas Pelita Bangsa, Indonesia
  • Muhamad Fatchan Informatics, Universitas Pelita Bangsa, Indonesia
  • Donny Maulana Informatics, Universitas Pelita Bangsa, Indonesia
Keywords: 2024 Presidential Election, Chebyshev, Euclidean, K-Nearest Neighbor, Twitter

Abstract

The potential difference between the popularity of presidential candidates on social media and in the general public poses a serious challenge in predicting the outcome of the 2024 presidential election. Technical constraints in collecting, cleaning and analyzing dynamic and large-scale social media data can threaten the accuracy and validity of predictions. To overcome this problem, careful steps and in-depth understanding are needed. Therefore, this study aims to predict the winner of the 2024 presidential election from the popularity of presidential candidates Anies Baswedan, Ganjar Pranowo, and Prabowo Subianto on Twitter. The K-Nearest Neighbor (K-NN) method with the Both Metric approach (Euclidean and Chebyshev) was used to analyze 51,192 tweet data through the Knowledge Discovery in Database (KDD) stage using Orange software. The evaluation results show almost the same performance, with AUC values of 0.725 for Euclidean and 0.720 for Chebyshev. The CA result was 55.6% for Euclidean and 55.4% for Chebyshev. Although F1, precision, and recall were almost the same, overall, the Euclidean metric was better. The prediction shows Prabowo Subianto as the most popular candidate on Twitter. Nonetheless, these results need to be interpreted with caution and strengthened with further analysis and additional data to get a more comprehensive conclusion. This research shows that K-NN with both metrics can provide predictions above 50%, reliable enough to be able to predict the most popular candidates on Twitter.

Downloads

Download data is not yet available.

References

Pemerintah Republik Indonesia, "Undang-Undang Republik Indonesia Nomor 42 Tahun 2008 tentang Pemilihan Umum Presiden dan Wakil Presiden," Jakarta: Sekretariat Negara, 2008. Tersedia: https://www.dpr .go.id/dokjdih/document/uu/UU_2008_42.pdf. [Diakses pada 30 Juni 2023].

Hartanto, Anggit Dwi, et al. "Job Seeker Profile Classification of Twitter Data Using The Naïve Bayes Classifier Algorithm Based on The DISC Method," 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2019.

E. Utami, "Comparison Naïve Bayes Classifier, K-Nearest Neighbor And Support Vector Machine In The Classification Of Individual On Twitter Account," Jurnal Teknik Informatika (JUTIF), vol. 3, no.3, 673-680, 2022.

H. Hamiruddin, "Survei dan Konsultan Politik: Membangun Popularitas dan Elektabilitas Politik," Al-Din: Jurnal Dakwah dan Sosial Keagamaan, vol. 7, no. 1, 2021.

N. Faradis, N. A. Al Fauzah, and M. I. Al Anshori, "Media Sosial dan Persepsi Publik: Analisis Strategi Kampanye Digital Calon Presiden Indonesia 2024," In Prosiding Seminar Nasional Ilmu Ilmu Sosial (SNIIS), vol. 2, pp. 643-652, 2023.

A. D. Akmal, I. Permana, H. Fajri, and Y. Yuliarti, "Opini Masyarakat Twitter terhadap Kandidat Bakal Calon Presiden Republik Indonesia Tahun 2024," Jurnal Manajemen dan Ilmu Administrasi Publik (JMIAP), vol. 4, no. 4, 287-295, 2022.

W. Winarsih, and I. Irwansyah, "Proteksi Privasi Big Data Dalam Media Sosial," Jurnal Audience: Jurnal Ilmu Komunikasi, vol. 3, no. 1, 1-33, 2020.

D. Faroek, M. Yusuf, and G. Syatauw, "Sentiment Analysis of the Popularity of Parties Supporting the 2024 Presidential Candidates on Twitter Using the Naive Bayes Classifier Algorithm," Antivirus: Jurnal Ilmiah Teknik Informatika, vol. 17, no. 2, 216-227, 2023.

M. Syamsurrijal, A. Nurmandi, H. Jubba, M. Hidayati, T. Baharuddin, and Z. Qodir, "Prediction Candidates and Political Parties in the Presidential Election 2024 in Indonesia Based on Twitter," ResearchSquare, pp. 1-9, 2021.

R. D. Liklikwatil, E. Noersasongko, and C. Supriyanto, "Optimasi K-Nearest Neighbor Dengan Particle Swarm Optimization Untuk Memprediksi Harga Komoditi Karet," E-JURNAL JUSITI: Jurnal Sistem Informasi dan Teknologi Informasi, vol. 7, no. 2, 172-182, 2018.

M. Yuliana, "Perbandingan Penskalaan Dimensi Ganda Non-Metrik dengan Menggunakan Tiga Jarak (Euclidean, Chebyshev, dan Minkowski)," Skripsi, Universitas Brawijaya, Malang, 2015. (Kutipan pada Pendahuluan)

A. Y. Saputra and Y. Primadasa, "Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbor," Techno. Com, vol. 17, no. 4, pp. 395-403, 2018.

M. Badrul, "Prediksi Hasil Pemilu Legislatif Dengan Menggunakan Algoritma K-Nearest Neighbor," Jurnal Pilar Nusa Mandiri, vol. 11, no. 2, pp. 152-160, 2015.

A. Putri, C. S. Hardiana, E. Novfuja, F. T. P. Siregar, R. Rahmaddeni, Y. Fatma, and R. Wahyuni, "Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir," MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 1, 20-26, 2023.

S. Sudriyanto, F. Syahro, and N. Fitriani, "Perbandingan Performa Model Machine Learning Support Vector Machine, Neural Network, dan K-Nearest Neighbors dalam Prediksi Harga Saham," Jurnal Advanced Research Informatika, vol. 2, no. 1, 13-21, 2023.

Sugiyono, "Metodologi Penelitian Kuantitatif, Kualitatif, dan R&D," Bandung: ALFABETA, 2019.

D. Yanosma, A. Johar, and K. Anggriani, "Implementasi Metode K-Nearest Neighbor (KNN) dan Simple Additive Weighting (SAW) dalam Pengambilan Keputusan Seleksi Anggota PASKIBRAKA," Rekursif: Jurnal Informatika, vol. 4, no. 2, 2016.

M. Yuliana, "Perbandingan Penskalaan Dimensi Ganda Non-Metrik dengan Menggunakan Tiga Jarak (Euclidean, Chebyshev, dan Minkowski)," Skripsi, Universitas Brawijaya, Malang, 2015. (Kutipan pada Metode/Perancangan)

I. M. K. Karo, A. Khosuri, J. S. I. Septory, and D. P. Supandi, "Pengaruh Metode Pengukuran Jarak pada Algoritma k-NN untuk Klasifikasi Kebakaran Hutan dan Lahan," Jurnal Media Informatika Budidarma, vol. 6, no. 2, pp. 1174-1182, 2022.

Wikipedia, "Orange (Software)," Wikipedia, 2023. [Online]. Tersedia: Orange (software) - Wikipedia. [Diakses pada 8 Juli 2023].

P. Meilina, "Penerapan data mining dengan metode kalsifikasi menggunakan decision tree dan regresi," Jurnal Teknologi, vol. 7, no. 1, pp. 11-20, 2015.

H.N. Rahmah and R. Sulistiyowati, "Penggunaan Software Orange Data Mining pada Implementasi Text Mining dalam Analisis Sentimen Netizen di Twitter Terhadap Kelangkaan Minyak Goreng," Sigma-Mu, vol. 14, no. 2, pp. 1-11, 2022.

M. D. F. Tino, H. Hasanah and T. D. Santosa, "Perbandingan Algoritma Support Vector Machines (SVM) dan Neural Network untuk Klasifikasi Penyakit Jantung." Infotech Journal, 9(1), 232-235, 2023.

H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, "Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung," ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 81-86, 2020.

V. R. Sari, F. Firdausi, and Y. Azhar, "Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes," Edumatic: Jurnal Pendidikan Informatika, vol. 4, no. 2, pp. 1-9, 2020.

A. W. Hutomo, “Perbandingan Kinerja AUC dan G-Means pada Machine Learning Berbasis Seleksi Fitur Algoritma Genetika untuk Prediksi Cacat Perangkat Lunak,” Bachelor's Thesis, Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah, Jakarta, 2020.

Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, & M. Waluyo, “Prediction For Cooperative Credit Eligibility Using Data Mining Classification With C4. 5 Algorithm,” Jurnal Teknik Informatika (JUTIF), vol. 2, no. 2, 67-74, 2021.

W. Yusuf, R. Witri, & C. Juliane, “Model Prediksi Penjualan Jenis Produk Tekstil Menggunakan Algoritma K-Nearest Neighbor (K-NN),” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 7, no. 1, 2022.

D. D. Putri, G. F. Nama, & W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, 2022.

M. Maulidah, W. Gata, R. Aulianita, & C. I. Agustyaningrum, “Algoritma Klasifikasi Decision Tree Untuk Rekomendasi Buku Berdasarkan Kategori Buku. E-Bisnis,” Jurnal Ilmiah Ekonomi dan Bisnis, vol. 13, no. 2, 89-96, 2020.

M. Azhari, Z. Situmorang, & R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4. 5, Random Forest, SVM dan Naive Bayes,” Jurnal Media Informatika Budidarma, vol. 5, no. 2, 640-651, 2021.

R. R. Waliansyah and C. Fitriyah, “Muttaqin, F. A., & Bachtiar, A. M. (2016). Implementasi Teks Mining Pada Aplikasi Pengawasan Penggunaan Internet Anak ‘Dodo Kids Browser,’” Jurnal Edukasi dan Penelitian Informatika (Jepin),vol. 5, no. 2, 2019.

F. A. Muttaqin and A. M. Bachtiar, “Implementasi Teks Mining Pada Aplikasi Pengawasan Penggunaan Internet Anak Dodo Kids Browser” Jurnal Ilmiah Komputer dan Informatika (KOMPUTA), pp. 1-8, 2016.

A. Winantu and C. Khatimah, “Perbandingan Metode Klasifikasi Naive Bayes Dan K-Nearest Neighbor Dalam Memprediksi Prestasi Siswa,” INTEK: Jurnal Informatika dan Teknologi Informasi, vol. 6, no. 1, pp. 58-64, 2023.

I. Yolanda and H. Fahmi, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT. Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 3, no. 3, pp. 9-15, 2020.

Published
2024-04-04
How to Cite
[1]
S. R. Darmawan, M. Fatchan, and D. Maulana, “PREDICTION OF 2024 PRESIDENTIAL ELECTION USING K-NN WITH METRIC APPROACHES CHEBYSHEV AND EUCLIDEAN BASED ON TWITTER DATA INVESTIGATION”, J. Tek. Inform. (JUTIF), vol. 5, no. 2, pp. 475-485, Apr. 2024.