COMPARISON OF RANDOM FOREST AND SUPPORT VECTOR MACHINE METHODS ON TWITTER SENTIMENT ANALYSIS (CASE STUDY: INTERNET SELEBGRAM RACHEL VENNYA ESCAPE FROM QUARANTINE)
Abstract
Coronavirus (Covid-19) is an infectious disease spreading widely throughout the world. Covid-19 has been declared a pandemic. Transmission of Covid-19 spreads through the Droplet. The Indonesian government has made efforts to prevent the spread of Covid-19, one of which is the implementation of quarantine regulated through Circular Letter Number 8 of 2021 concerning International Travel Health Protocols. The case of Selebgram Rachel Vennya's escape from quarantine had become a trending topic on Twitter. Many Twitter users in Indonesia gave their opinions and comments on this case. Therefore, it is necessary to research public sentiment on the case of the escape of Selebgram Rachel Vennya from quarantine. The data used is taken from netizen comments from social media, namely Twitter, in the form of positive and negative comments; the algorithms used are Random Forest (RF) and Support Vector Machine (SVM). This study aims to compare the classification method to public sentiment regarding the case of the escape of Selebgram Rachel Vennya from quarantine using the Random Forest and SVM methods. The classification results show that the Random Forest algorithm has an accuracy value of 94%. In comparison, the SVM algorithm classification results get an accuracy value of 93%. So it can be concluded, Twitter sentiment analysis in the case study of Rachel Venya's escape from quarantine that the Random Forest algorithm got the best results.
Downloads
References
R. Wati and S. Ernawati, “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,” J. Tek. Inform. UNIKA St. Thomas, vol. 06, pp. 240–247, 2021, [Online]. Available: http://ejournal.ust.ac.id/index.php/JTIUST/article/view/1465.
P. L. O. Permadhi and I. M. Sudirga, “Problematika Penerapan Sistem Karantina Wilayah Dan Psbb Dalam Penanggulangan Covid-19,” Kertha Semaya J. Ilmu Huk., vol. 8, no. 9, p. 1355, 2020, doi: 10.24843/ks.2020.v08.i09.p06.
Permenkes No. 6 tahun2018, “Addendum Surat Edaran Nomor 18 Tahun 2021 Tentang Protokol Kesehatan Perjalanan Internasional Pada Masa Pandemi Corona Virus Disease 2019 (Covid-19),” Menteri Kesehatan Republik Indonesia Peraturan Menteri Kesehatan Republik Indonesia. 2021, [Online]. Available: https://kemlu.go.id/portal/id/page/73/covid-19.
F. Mursid, “Satgas Jelaskan Sanksi Keras Bagi Warga Kabur Saat Karantina,” Republika.co.id, 2021. https://www.republika.co.id/berita/r0yy1q349 (accessed Dec. 14, 2021).
Suara.com, “Kronologi Rachel Vennya Kabur dari Wisma Atlet,” Suara.Com, 2021. https://www.suara.com/entertainment/2021/10/14/081829/kronologi-rachel-vennya-kabur-dari-wisma-atlet (accessed Dec. 14, 2021).
A. Kulsumarwati, I. Purnamasari, and B. A. Darmawan, “Penerapan SVM dan Information Gain Pada Analisis Sentimen Pelaksanaan Pilkada Saat Pandemi,” J. Teknol. Inform. dan Komput., vol. 7, no. 2, pp. 101–109, 2021, doi: 10.37012/jtik.v7i2.641.
R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.
B. B. Baskoro, I. Susanto, and S. Khomsah, “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus Ulasan Pelanggan Pada Situs TRIPADVISOR),” vol. 8106, pp. 21–29, 2021, doi: 10.20895/INISTA.V3.
S. Khomsah, “Sentiment Analysis On YouTube Comments Using Word2Vec and Random Forest,” Telematika, vol. 18, no. 1, p. 61, 2021, doi: 10.31315/telematika.v18i1.4493.
M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” J. Inform. Upgris, vol. 7, no. 1, pp. 36–40, 2021.
E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.
Copyright (c) 2022 sudianto
This work is licensed under a Creative Commons Attribution 4.0 International License.