IMPLEMENTATION OF DEEP LEARNING ON FLOWER CLASSIFICATION USING CNN METHOD

  • Anggun Pratiwi Information Systems And Technology Education, Universitas Pendidikan Indonesia, Indonesia
  • Ahmad Fauzi Information Systems And Technology Education, Universitas Pendidikan Indonesia, Indonesia
Keywords: CNN, Deep Learning, Flower Classification

Abstract

Technological developments in the field of artificial intelligence, particularly deep learning, have made significant contributions to various applications, including pattern recognition and object classification in visual images. One of the interesting applications of deep learning is image classification, where these techniques have proven effective in tackling complex problems, such as object recognition in visual images. Flowering plants, with approximately 369,000 known species, are an interesting object of study. In an effort to classify different types of flowers quickly and efficiently, a digital approach is a must. This research aims to implement deep learning technology, especially CNN method, in flower classification. One method that can be used is Convolutional Neural Network (CNN), a deep learning algorithm that is able to process image information well. In flower type classification, supervised learning techniques are essential. By giving the label (flower type) to the algorithm as the basis of truth, the use of CNN on a large scale can produce predictions and classifications with a high level of accuracy. This research produces a classification model that is more precise and able to overcome variations in flower morphology with 2 different datasets namely Oxford17 resulting in 84% accuracy and oxford102 resulting in an accuracy value of 64%.

Downloads

Download data is not yet available.

References

K. Marlin, E. Tantrisna, B. Mardikawati, R. Anggraini, E. Susilawati, and M. Yunus Batusangkar, “Manfaat dan Tantangan Penggunaan Artificial Intelligences (AI) Chat GPT Terhadap Proses Pendidikan Etika dan Kompetensi Mahasiswa Di Perguruan Tinggi,” Innov. J. Soc. Sci. Res., vol. 3, no. 6, pp. 5192–5201, 2023.

S. R. Dewi, “Deep Learning Object Detection Pada Video,” Deep Learn. Object Detect. Pada Video Menggunakan Tensorflow Dan Convolutional Neural Netw., pp. 1–60, 2018, [Online]. Available: https://dspace.uii.ac.id/bitstream/handle/123456789/7762/14611242_Syarifah Rosita Dewi_Statistika.pdf?sequence=1

F. Marpaung, F. Aulia, and R. C. Nabila, Computer Vision Dan Pengolahan Citra Digital. 2022.

H. A. Pratiwi, M. Cahyanti, and M. Lamsani, “Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network,” Sebatik, vol. 25, no. 1, pp. 124–130, 2021, doi: 10.46984/sebatik.v25i1.1297.

N. Noflindawati, A. Anwar, Y. Yusniwati, and A. Sutanto, “Karakter Morfologi dan Sitologi Bunga Pepaya Merah Delima,” J. Biol. UNAND, vol. 7, no. 1, p. 21, 2019, doi: 10.25077/jbioua.7.1.21-26.2019.

Y. A. Suwitono and F. J. Kaunang, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Daun Dengan Metode Data Mining SEMMA Menggunakan Keras,” J. Komtika (Komputasi dan Inform., vol. 6, no. 2, pp. 109–121, 2022, doi: 10.31603/komtika.v6i2.8054.

P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, pp. 12–21, 2020.

K. Kristiawan, D. D. Somali, T. A. Linggan jaya, and A. Widjaja, “Deteksi Buah Menggunakan Supervised Learning dan Ekstraksi Fitur untuk Pemeriksa Harga,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 541–548, 2020, doi: 10.28932/jutisi.v6i3.3029.

J. C. Mestika, M. O. Selan, and M. I. Qadafi, “Menjelajahi Teknik-Teknik Supervised Learning untuk Pemodelan Prediktif Menggunakan Python,” vol. 99, no. 99, pp. 216–219, 2022.

S. P. Siahaan, E. Willy, A. Cahyadi, and I. P. Pangaribuan, “Tomat Menggunakan Convolutional Neural Network Monitoring and Controlling Fertilization System for Tomato Cultivation Using Convolutional Neural Network,” e-Proceeding Eng., vol. 7, no. 3, pp. 8647–8661, 2020.

M. Ula, A. F. Ulva, and M. Mauliza, “Implementasi Machine Learning Dengan Model Case Based Reasoning Dalam Mendagnosa Gizi Buruk Pada Anak,” J. Inform. Kaputama, vol. 5, no. 2, pp. 333–339, 2021, doi: 10.59697/jik.v5i2.267.

A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020, doi: 10.22441/format.2019.v8.i2.007.

I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (Cnn),” J. Gaussian, vol. 9, no. 3, pp. 273–282, 2020, doi: 10.14710/j.gauss.v9i3.27416.

L. F. Viera Valencia and D. Garcia Giraldo, “済無No Title No Title No Title,” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 2, pp. 12–64, 2019.

O. D. Nurhayati, D. Eridani, and M. H. Tsalavin, “Sistem Isyarat Bahasa Indonesia (SIBI) Metode Convolutional Neural Network Sequential secara Real Time,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 4, pp. 819–828, 2022, doi: 10.25126/jtiik.2022944787.

M. Harahap, Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing, and Amir Mahmud Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 70–77, 2022, doi: 10.29207/resti.v6i1.3373.

I. Suhardin, A. Patombongi, and A. M. Islah, “MENGIDENTIFIKASI JENIS TANAMAN BERDASARKAN CITRA DAUN MENGGUNAKAN AlGORITMA CONVOLUTIONAL NEURAL NETWORK,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 6, no. 2, pp. 100–108, 2021, doi: 10.51876/simtek.v6i2.101.

I. Deep, L. Menggunakan, U. Image, and C. Varietas, Digital Repository Universitas Jember Implementasi Deep Learning Menggunakan. 2022.

Stephen, Raymond, and H. Santoso, “Aplikasi Convolution Neural Network,” J. Sist. Inf. dan Telemat., vol. Volume 10, pp. 122–132, 2019.

S. R. Putra, “Implementasi Convolutional Neural Network Untuk Klasifikasi Obyek Pada Citra,” 2015, [Online]. Available: http://repository.its.ac.id/71292/1/5111100076-Undergraduate Thesis.pdf

M. Fasounaki, E. B. Yüce, S. Öncül, and G. Ince, “CNN-based Text-independent Automatic Speaker Identification Using Short Utterances,” Proc. - 6th Int. Conf. Comput. Sci. Eng. UBMK 2021, vol. 01, pp. 413–418, 2021, doi: 10.1109/UBMK52708.2021.9559031.

A. TiaraSari and E. Haryatmi, “Penerapan Convolutional Neural Network Deep Learning dalam Pendeteksian Citra Biji Jagung Kering,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 265–271, 2021, doi: 10.29207/resti.v5i2.3040.

rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Tugas Akhir Tugas Akhir,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.

R. A. Y, “Perbandingan Algoritma Cnn Dan Svm Untuk Analisis Sentimen Mengenai Kenaikan Harga Bahan Bakar Minyak,” vol. 10, no. 6, pp. 5418–5422, 2023.

P. R. Sihombing, “Perbandingan Metode Artificial Neural Network (ANN) dan Support Vector Machine (SVM) untuk Klasifikasi Kinerja Perusahaan Daerah Air Minum (PDAM) di Indonesia,” J. Ilmu Komput., vol. 13, no. 1, p. 9, 2020, doi: 10.24843/jik.2020.v13.i01.p02.

Published
2024-04-04
How to Cite
[1]
A. Pratiwi and A. Fauzi, “IMPLEMENTATION OF DEEP LEARNING ON FLOWER CLASSIFICATION USING CNN METHOD”, J. Tek. Inform. (JUTIF), vol. 5, no. 2, pp. 487-495, Apr. 2024.