APPLICATION OF K-MEANS CLUSTERING METHOD TO CLUSTER STUDENTS’ ENGLISH SKILL JASON ENGLISH COURSE

  • Khairunnisa Program Studi Sistem Informasi, Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Royal Kisaran, Indonesia
  • Juna Eska Program Studi Sistem Informasi, Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Royal Kisaran, Indonesia
  • Mustika Fitri Larasati Sibuea Program Studi Sistem Informasi, Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Royal Kisaran, Indonesia
Keywords: Algorithm, K-Means Clustering, Skill, PHP

Abstract

The role of students with high English skills and higher quality standards in an English course institution is one aspect that has a significant impact on the course institution's quality. To generate positive competition among students and to produce the best quality of students, student English skills should be clustered. The determination of students' English skills at the Jason English Course is currently done with the results of decisions that are off target, impenetrable, and inefficient because the calculations are still not computerized and depend on the tutor's personal feelings, causing it unachievable the initial goal of clustering these skills. The goal of this research is to make it easier for tutors to group students' English skills with targeted, transparent, and efficient decision results so that students can recognize their abilities and tutors can create appropriate learning methods so that students do not encounter learning obstacles. As a result, the course institution requires the appropriate technology to assist tutors in grouping students' abilities. The method used in this research was k-means clustering, which is a data mining technique. This research data is calculated and tested using Microsoft Excel, RapidMiner, Design Systems with PHP programming languages, and databases MySql. After calculating and testing the data, the accuracy obtained on the data sample reached 80%. As a result, using K-means clustering, Student English Skill Jason English Course can be clustered quickly, clearly, efficiently, and accurately.

Downloads

Download data is not yet available.

References

S. Aisyah, “Dampak Teknologi Informasi dan Komunikasi Terhadap Pembentukan Akhlak Peserta Didik Perspektif Pendidikan Islam di MTs. Olang Kecamatan Ponrang Selatan …,” J. Konsepsi, vol. 8, no. 2, pp. 45–54, 2019, [Online]. Available: https://p3i.my.id/index.php/konsepsi/article/view/18%0Ahttps://p3i.my.id/index.php/konsepsi/article/download/18/80.

D. Society, D. A. N. Revolusi, and I. Di, “Generasi Milenial Yang Siap Menghadapi Era Revolusi,” no. November, pp. 1–6, 2021.

D. S. Adzkiya and M. Suryaman, “Penggunaan Media Pembelajaran Google Site dalam Pembelajaran Bahasa Inggris Kelas V SD,” J. Teknol. Pendidik., vol. 6, no. 2, pp. 20–32, 2021, doi: 10.32832/educate.v6i2.4891.

I. Sari, “Motivasi Belajar Mahasiswa Program Studi Manajemen dalam Penguasaan Keterampilan Berbicara (Speaking) Bahasa Inggris,” Manaj. Tools, vol. 9, no. 1, pp. 41–52, 2018, [Online]. Available: http://jurnal.pancabudi.ac.id/index.php/JUMANT/article/view/191.

M. Maliki and S. A. Hasyyati, “Pelatihan Bahasa Inggris Pekerja Migran Indonesia di Brunei Darussalam,” no. 1996, pp. 39–48, 2022.

Z. Aini, H. Nirwana, and M. Marjohan, “Kontribusi Penguatan Guru Mata Pelajaran Dan Kepercayaan Diri Siswa Terhadap Keaktifan Siswa Dalam Belajar,” Biblio Couns J. Kaji. Konseling dan Pendidik., vol. 1, no. 1, pp. 1–11, 2018, doi: 10.30596/bibliocouns.v1i1.1941.

E. Srikanti, R. F. Yansi, Norvahina, I. Permana, and F. N. Salisah, “Penerapan Data Mining Untuk Menganalisis Penjualan Barang dengan Menggunakan Metode Apriori pada Supermarket Sejahtera Lhoksumawe,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 4, pp. 77–80, 2018.

R. Nofitri and J. Eska, “Implementasi Data Mining Klasifikasi C4.5 Dalam Menentukan Kelayakan Pengambilan Kredit,” Semin. Nas. R., vol. 9986, no. September, pp. 307–310, 2018.

E. Ongko, A. Teknologi, and I. Immanuel, “Perbaikan Performance K-Means Melalui Perbaikan,” vol. 9, no. 2, pp. 37–40, 2021.

N. Purba, P. Poningsih, and H. S. Tambunan, “Penerapan Algoritma K-Means Clustering Pada Penyebaran Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Provinsi Riau,” J. Inf. Syst. Res., vol. 2, no. 3, pp. 220–226, 2021, [Online]. Available: http://ejurnal.seminar-id.com/index.php/josh/article/view/736.

L. Maulida, “Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, p. 167, 2018, doi: 10.14421/jiska.2018.23-06.

R. Nainggolan, “OPTIMASI PERFORMA CLUSTER K-MEANS MENGGUNAKAN SUM OF Rena Nainggolan , Gortap Lumbantoruan,” vol. 2, no. 2, pp. 103–108, 2018.

R. Yulianti, “Identifikasi Gaya Belajar Statistika Mahasiswa Pendidikan Matematika di Papua (Survei: Kota Jayapura),” J. Pendidik., vol. 10, no. 1, pp. 104–113, 2022.

E. Ramadanti, “PENERAPAN DATA MINING ALGORITMA K-MEANS CLUSTERING PADA POPULASI AYAM PETELUR DI INDONESIA,” J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 1–7, 2022.

M. R. Muttaqin et al., “PENERAPAN K-MEANS CLUSTERING DAN CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING ( CRISP-DM ) UNTUK,” vol. 19, no. 1, pp. 38–53, 2022.

B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 1, pp. 13–21, 2021, doi: 10.30813/jbase.v4i1.2729.

L. P. Refialy, H. Maitimu, and M. S. Pesulima, “Perbaikan Kinerja Clustering K-Means pada Data Ekonomi Nelayan dengan Perhitungan Sum of Square Error (SSE) dan Optimasi nilai K cluster,” Techno.Com, vol. 20, no. 2, pp. 321–329, 2021, doi: 10.33633/tc.v20i2.4572.

Published
2022-06-29
How to Cite
[1]
K. Khairunnisa, J. Eska, and M. F. L. Sibuea, “APPLICATION OF K-MEANS CLUSTERING METHOD TO CLUSTER STUDENTS’ ENGLISH SKILL JASON ENGLISH COURSE ”, J. Tek. Inform. (JUTIF), vol. 3, no. 3, pp. 479-485, Jun. 2022.