• Alvianus Dengen Teknik Elektro, Fakultas Teknik, Universitas Teknologi Sulawesi, Indonesia
Keywords: Android, Application, Anopheles, Eigenface Algorithm, Identification, Training Image


The development of smartphones as tools used in research provides many benefits in several fields, including education, health, and agriculture. Digital image research developed in mobile apps can help us choose the best decision so that the results are by what has been planned. One of the developments in entomology is entomology research that uses digital imagery. In the dataset activity, researchers used the anopheles’s wings type as much as 22 image data. Fifteen types of Anopheles were used by the researcher with 100 experiments as test data. Image training and identification have the same process, taking pictures from a gallery or directly using the camera from an Android device. Preprocessing step in applications includes 1) converting image pixels to 100x100 pixels, then this pixel size becomes the standard of use in applications. 2) Convert an image to a binary using a threshold algorithm; this event is commonly called the Image Binaryization Process. Images derived from the threshold process are converted into one-dimensional vectors. Training Image and image identification using the Eigenface algorithm. The basic principle of the Eigenface algorithm is to quote the unique information of each image and then compare it to the image in the dataset. Identification with anopheles applications results in a good accuracy value with a success rate of 94.29%, with FMR value = 4.62% and FNMR = 2.78%.


Download data is not yet available.


R. I. Afida, “Deteksi Dini Osteoporosis Dengan Neuro-Fuzzy System Melalui Anatomic Index Dari Citra Dental Panoramic Radiograph Pada Area Tulang Mandible,” UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG, 2013.

R. N. Aini and A. Riyantomo, “Aplikasi Pembelajaran Bahasa Inggris Bersama ‘Transpofun’ Berbasis Android,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 1, no. 2, pp. 68–72, 2019.

S. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model,” J. Comput. Sci., vol. 25, no. 1, pp. 152–160, 2018.

R. H. Ariesdianto, Z. E. Fitri, A. Madjid, and A. M. N. Imron, “Identifikasi Penyakit Daun Jeruk Siam Menggunakan K-Nearest Neighbor,” J. Ilmu Komput. dan Inform., vol. 1, no. 2, pp. 133–140, 2021.

F. A. Bachtiar et al., “Sistem Pendukung Keputusan Seleksi Penentuan Penerima Beasiswa Dengan Metode Simple Additive Weighting (SAW),” J. Inform. dan Rekayasa Perangkat Lunak, vol. 1, no. 2, pp. 68–72, Jan. 2019.

Biomedis Balitbang, Peta Anopheles di Tanah Papua. Kementerian Kesehatan R.I., Badan Penelitian dan Pengembangan Kesehatan, Balai Penelitian dan Pengembangan Biomedis Papua, 2015.

M. üg. Çarıkçı and F. Özen, “A Face Recognition System Based on Eigenfaces Method,” Procedia Technol., vol. 1, pp. 118–123, 2012.

K. Choi, K. A. Toh, and H. Byun, “Realtime training on mobile devices for face recognition applications,” Pattern Recognit., vol. 44, no. 2, pp. 386–400, Jan. 2011.

M. De Marsico, C. Galdi, M. Nappi, and D. Riccio, “FIRME: Face and iris recognition for mobile engagement,” Image Vis. Comput., vol. 32, no. 12, pp. 1161–1172, 2014.

J. Efendi, M. I. Zul, and W. Yunanto, “Real time face recognition using eigenface and viola-jones face detector,” Int. J. Informatics Vis., vol. 1, no. 1, pp. 16–22, 2017.

D. Guillaume, C. Xing, and S. Kishore, “Face Recognition in Mobile Phones,” ResearchGate, vol. 24, no. 17, pp. 1–8, 2010.

Y. Guo, S. Han, Y. Li, C. Zhang, and Y. Bai, “K-Nearest Neighbor combined with guided filter for hyperspectral image classification,” in Procedia Computer Science, 2018, vol. 129, pp. 159–165.

J. Hu, L. Peng, and L. Zheng, “XFace: A Face Recognition System for Android Mobile Phones,” in Proceedings - 3rd IEEE International Conference on Cyber-Physical Systems, Networks, and Applications, CPSNA 2015, 2015, pp. 13–18.

V. Jalaja and G. S. G. N. Anjaneyulu, “Face recognition by using eigen face method,” Int. J. Sci. Technol. Res., vol. 9, no. 3, pp. 961–966, 2020.

A. JAMHARI, “A Perancangan Sistem Pengenalan Wajah Secara Real-Time pada CCTV dengan Metode Eigenface:,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 2, no. 2, pp. 20–32, 2020.

A. JANNAT, U. H. ABU, N. TAHREEM, and M. TAYYABA, “a Review on Software Testing and Its Methodology,” i-manager’s J. Softw. Eng., vol. 13, no. 3, p. 32, 2019.

A. Kaur, “An Essential Guide to Automated GUI Testing Of Android Mobile Applications,” Int. J. Comput. Tech., vol. 2, no. 6, pp. 8–12, 2015.

K. E. Kim et al., “Hand grip pattern recognition for mobile user interfaces,” Proc. Natl. Conf. Artif. Intell., vol. 2, pp. 1789–1794, 2006.

Y. I. Kurniawan, A. Rahmawati, N. Chasanah, and A. Hanifa, “Application for determining the modality preference of student learning,” in Journal of Physics: Conference Series, 2019, vol. 1367, no. 1, pp. 1–11.

S. Lestari, A. Adrial, and R. Rasyid, “Identifikasi Nyamuk Anopheles Sebagai Vektor Malaria dari Survei Larva di Kenagarian Sungai Pinang Kecamatan Koto XI Tarusan Kabupaten Pesisir Selatan,” J. Kesehat. Andalas, vol. 5, no. 3, pp. 656–660, 2016.

Y. Li, C. Xia, and J. Lee, “Detection of small-sized insect pest in greenhouses based on multifractal analysis,” Optik (Stuttg)., vol. 126, no. 19, pp. 2138–2143, 2015.

C. H. Low, “NSL-KDD Dataset.” 2015.

N. Maharani Raharja, M. Arief Fathansyah, and A. Nur Nazilah Chamim, “Vehicle Parking Security System with Face Recognition Detection Based on Eigenface Algorithm,” J. Robot. Control, vol. 3, no. 1, pp. 78–85, 2021.

P. S. Ramadhan, S. Nurarif, M. Syahril, Y. Riani, and N. Gulo, “Teknologi Biometrik Menggunakan Algoritma Eigenface Biometric Technology Using Eigenface Algorithm,” J. Comput. Eng. Syst. Sci., vol. 7, no. January, pp. 43–54, 2022.

R. Rosnelly, M. S. Simanjuntak, A. Clinton Sitepu, M. Azhari, S. Kosasi, and Husen, “Face Recognition Using Eigenface Algorithm on Laptop Camera,” in 2020 8th International Conference on Cyber and IT Service Management, CITSM 2020, 2020, pp. 1–4.

A. B. Salat, “Pembuatan Alat Pendeteksi Kebisingan Untuk Budidaya Burung Love Bird Berbasis Arduino Dan Android Melalui Wifi,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 1, no. 2, pp. 106–114, 2019.

S. Putra, I. Fitri, and S. Ningsih, “Absensi Pengenalan Wajah Menggunakan Menggunakan Algoritma M ∑,” J. Appl. Informatics Comput., vol. 5, no. 1, pp. 21–27, 2021.

U. Sari and K. Budayawan, “Implementasi Metode Eigenface pada Sistem Absensi Wajah Berbasis PHP dan MySQL,” Voteteknika (Vocational Tek. Elektron. dan Inform., vol. 9, no. 3, p. 111, 2021.

P. A. Sasmito, Ilhamsyah, and R. P. Sari, “Sistem Pendukung Keputusan Penerima Beasiswa Dengan Menerapkan Metode Simple Additive Weighting (SAW),” Universitas Muhammadiyah Surakarta, 2019.

E. A. Shams and A. Rizaner, “A novel support vector machine based intrusion detection system for mobile ad hoc networks,” Wirel. Networks, vol. 24, no. 5, pp. 1821–1829, 2018.

W. Suryn, Software Quality Engineering: A Practitioner’s Approach, vol. 9781118592496. 2014.

Suwanto Sanjay dan FaFadhilah Syafria, “Sistem Pakar Identifikasi Nyamuk Menggunakan Pohon Keputusan (Studi kasus Nyamuk Anopheles betina asal Oriental di Indonesia),” J. Sains, vol. 11, no. 2, pp. 266–272, 2014.

M. Verma and B. Raman, “Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval,” J. Vis. Commun. Image Represent., vol. 32, pp. 224–236, 2015.

How to Cite