DETECTION OF ACTIONS BISINDO (INDONESIAN SIGN LANGUAGE) INTO TEXT-TO-SPEECH USING LONG SHORT-TERM MEMORY WITH MEDIAPIPE HOLISTICS
Abstract
Sign language is frequently used by those who have difficulty hearing or speaking to communicate. Because it is a non-verbal language that expresses meaning through hand and body gestures, sign language is an essential form of communication for people who rely on it. The objective of this work is to develop a detection that can understand actions made in Indonesian Sign Language (BISINDO), translate them into text, and use speech recognition (Text- to-Speech) to provide audio responses. In particular at Sekolah Luar Biasa, the main objective is to assist and enhance communication among persons with impairments. Long Short-Term Memory (LSTM) and Mediapipe Holistics are use to achieve its objectives. It is demonstrated how LSTM and Mediapipe Holistics enhance performance and accuracy using two different dataset types. The first dataset landmarks created using the Mediapipe Holistics model, while the second dataset provides original shots devoid of landmarks. Batch size and epoch settings are among the many parameters needed for training and testing processes. Model using the landmark-free dataset only manages to reach an accuracy of approximately 89.33%, the model using the landmark with mediapipe of accuracy of about 96.67%. Furthermore, the landmark-based model exhibits strong F1 scores, recall, and precision. The research successfully recognizes a number of BISINDO acts, such as "saya" (I), "kamu" (you), "ayah" (father), "ibu" (mother), and others present in the dataset. On the basis of the gestures it has identified can also make speech.
Downloads
References
A.N. Aliyah, "Implementasi Metode Human Activity Recognition (HAR) Menggunakan Mediapipe Holistics Dan Algoritma Long Short Term Memory (LSTM)," 2022.
W. Amei, D. Huailin, W. Qingfeng, and L. Ling, "A survey of application-level protocol identification based on machine learning," in International Conference on Information Management, Innovation Management and Industrial Engineering, 2011, pp. 201-204.
M.R. Amiarrahman and Tri Handika, "Analisis dan implementasi algoritma klasifikasi Random Forest dalam pengenalan Bahasa Isyarat Indonesia (BISINDO)," in Prosiding Seminar Nasional Inovasi Teknologi, 2017, pp. 83-88.
H. Moetia Putri, "Pendeteksian Bahasa Isyarat Indonesia Secara Real-Time Menggunakan Long Short Term Memory (LSTM)," 2022
F.X. Loren Ruberu, "Sistem Deteksi Simbol pada SIBI (Sistem Isyarat Bahasa Indonesia) Secara Real Time Menggunakan Mediapipe dan LSTM," 2020
A. Pathak, A. Kumar, P. Priyam, P. Gupta, and G. Chugh, "Real Time Sign Language Detection," International Journal for Modern Trends in Science and Technology, 2022, vol. 8, pp. 32-37
Nofal Anam, "Sistem Deteksi Simbol pada SIBI (Sistem Isyarat Bahasa Indonesia) Menggunakan Mediapipe dan ResNet-50". 2020
M. Khaliluzzaman, M.A.B.S. Sayem, and L.K. Misbah, "HActivityNet: A Deep Convolutional Neural Network for Human Activity Recognition," EMITTER International Journal of Engineering Technology, 2021, vol. 9, no. 2, pp. 357-376
J.B. Bullock, "Artificial Intelligence, Discretion, and Bureaucracy," American Review of Public Administration, 2019, pp. 1-11
Dong et al. (2017). “The Mediating Role Of Resilience In Relationship Between Social Support And Posttraumatic Growth Among Colorectal Cancer Survivors With Permanent Intestinal Ostomies: A Structural Equation Model Analysis”. Eouropean Journal Of OncologyNursing. https://dx.doi.org/10.1016/j.ejon.2017.04.007
M. Pradikja, H. Tolle, and K. Brata, "Pengembangan Aplikasi Pembelajaran Bahasa Isyarat Berbasis Android Tablet," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2017, vol. 2, no. 8, pp. 2877-2885
A. Halder and A. Tayade, "Real-time Vernacular Sign Language Recognition using MediaPipe and Machine Learning," International Journal of Research Publication and Reviews, 2021, no. 2, pp. 9-17.
Amei, W., D. Huailin, W. Qingfeng, and L. Ling, "A survey of application-level protocol identification based on machine learning," in International Conference on Information Management, Innovation Management and Industrial Engineering, 2011, pp. 201-204
M.R. Amiarrahman and Tri Handika, "Analisis dan implementasi algoritma klasifikasi Random Forest dalam pengenalan Bahasa Isyarat Indonesia (BISINDO)," in Prosiding Seminar Nasional Inovasi Teknologi, 2017, pp. 83-88.
A. Anilkumar, K.T. A., S. Sajan, and K.A. S., "Pose Estimated Yoga Monitoring System," SSRN Electronic Journal, Icicnis, 2021, pp. 1-8. [Online]. Available: https://doi.org/10.2139/ssrn.3882498/
"MediaPipe," MediapipeDev, 2020. [Online]. Available: https://mediapipe.dev/
D.J.P. Manajang, S.R.U.A. Sompie, and A. Jacobus, "Implementasi Framework Tensorflow Object Detection API Dalam Mengklasifikasi Jenis Kendaraan Bermotor," Jurnal Teknik Informatika, 2020, vol. 15, pp. 171-178
M. AI Body Language Decoder using MediaPipe and Python. International Journal of Advance Research, Ideas and Innovations in Technology, 2021, vol. 7, no. 3, pp. 2436-2439.
R.A. Mursita, "Respon Tunarungu Terhadap Penggunaan Sistem Bahasa Isyarat Indonesa (Sibi) Dan Bahasa Isyarat Indonesia (Bisindo) Dalam Komunikasi," Inklusi, 2015, vol. 2, no. 2, p. 221. [Online]
A.S. Nugraheni, A.P. Husain, and H. Unayah, "Optimalisasi Penggunaan Bahasa Isyarat Dengan SIBI dan BISINDO Pada Mahasiswa Difabel Tunarungu di Prodi PGMI UIN Sunan Kalijaga," Holistika, pp. 28-33. [Online]. Available: jurnal.umj.ac.id/index.php/holistika
G. Sutrisnadipraj, N. Shesilia K, S. Putri F, Y. Yulianto, P. Handayani, and W.P. Sembiring, "Intervensi Psikoedukasi Dalam Mengatasi Stigma Dan Hambatan Komunikasi Pada Teman Tuli Yang Tergabung Dalam Gerkatin Kepemudaan," Jurnal Bakti Masyarakat Indonesia, 2018, vol. 2, no. 1. [Online].
Copyright (c) 2023 Risda Rosdiana Agustin
This work is licensed under a Creative Commons Attribution 4.0 International License.