OPTIMIZING RAW MATERIAL INVENTORY MANAGEMENT OF MSME PRODUCT USING EXTREME GRADIENT BOOSTING (XGBOOST) REGRESSOR ALGORITHM: A SALES PREDICTION APPROACH

  • Muhammad Khusni Fikri Information System, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
  • Farrikh Al Zami Information System, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
  • Ika Novita Dewi Information System, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
  • Abu Salam Information Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
  • Ifan Rizqa Information Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
  • Mila Sartika Faculty of Economics and Business, Universitas Dian Nuswantoro, Indonesia
  • Diana Aqmala Faculty of Economics and Business, Universitas Dian Nuswantoro, Indonesia
Keywords: data science, MSMEs, predictive analysis, sales prediction, xgboost regressor

Abstract

Micro, Small and Medium Enterprises or MSMEs have a very important role for the survival of the economic sector in Indonesia. However, as the development of MSMEs, followed by a series of problems that arise. One of them is the problem of sales, business people have difficulty in determining the number of product sales in the future so that there is often an accumulation of raw materials or unsold products. This study aims to help MSMEs optimize raw material management by predicting product sales using the XGBoost Regressor Algorithm. Recently, the algorithm is very famous in the competition because of its reliability and no one has applied it to predict MSME product sales. Based on several other studies, this algorithm is accurate in predicting a value, such as predicting stock prices and the number of accidents in Bali, Indonesia. This research uses historical product sales data and weather data consisting of air temperature and relative humidity in Semarang Indonesia to train and evaluate the performance of the model. The prediction model was performed with predetermined variables and resulted in MAE 3.0752730568649156, MSE 38.25842541629838, and RMSE 6.185339555456788. In the end, it is concluded that the model built with XGBoost Regressor has a low error rate so that it can accurately predict the sales of an MSME product and optimize the management of raw materials for related products.

Downloads

Download data is not yet available.

References

Universitas Pembangunan Panca Budi, E. Erwansyah, R. Saragih, and T. O. H. Purba, “Pendampingan Pemilihan Merek, Pentingnya Merek dan Nilai Yang Dihasilkan Melalui Merek" Bagi Pelaku Umkm Di Desa Lau Bakeri, Kecamatan Kutalimbaru, Kabupaten Deli Serdang, Sumatera Utara,” methabdi, vol. 2, no. 1, pp. 26–31, Jun. 2022, doi: 10.46880/methabdi.Vol2No1.pp26-31.

Dikson Efrando Sidabutar, “Pengaruh Kualitas Sumber Daya Manusia Terhadap Pertumbuhan Usaha Mikro Kecil Menengah (Umkm) Di Kecamatan Rambah,” cano, vol. 11, no. 2, pp. 24–34, Dec. 2022, doi: 10.30606/cano.v11i2.1618.

Febri Azka Dzikrullah and Vadilla Mutia Zahara, “Pengaruh Tingkat Jumlah Umkm, Impor, Dan Expor Terhadap Pertumbuhan Ekonomi Di Indonesia Pada Tahun 1997-2019,” FLURALIS, pp. 62–68, Jul. 2023, doi: 10.61252/fjeb.v2i2.93.

E. Subiyantoro, A. R. Muslikh, M. Andarwati, G. Swalaganata, and F. Y. Pamuji, “Analisis Pemilihan Media Promosi UMKM untuk Meningkatkan Volume Penjualan Menggunakan Metode Analytical Hierarchy Process (AHP),” JTMI, vol. 8, no. 1, pp. 1–8, Jul. 2022, doi: 10.26905/jtmi.v8i1.6760.

B. E. Rokhmah and I. Yahya, “Tantangan, Kendala, Dan Kesiapan Pemasaran Online Umkm Di Desa Nglebak, Kecamatan Tawangmangu, Kabupaten Sukoharjo,” Final Mazawa, vol. 1, no. 1, pp. 20–31, Jun. 2022, doi: 10.22515/finalmazawa.v1i1.2363.

J. Jabbar, “Sistem Informasi Stok Barang Menggunakan Metode Clustering Kmeans (Studi Kasus Rmd Store),” infotech, vol. 8, no. 1, pp. 70–75, Apr. 2022, doi: 10.31949/infotech.v8i1.2280.

Harkim Simamora, Rejekia Vaizal Simanungkalit, Maya Andriani, and Bambang Sugiharto, “Socialization of UMKM Merchandise Inventory Management During the Covid 19 Pandemic in Desa Suka Makmur,” gandrung, vol. 2, no. 2, pp. 266–275, Aug. 2021, doi: 10.36526/gandrung.v2i2.1383.

R. Rios, C. Childs, S. Smith, N. Washburn, and K. Kurtis, “Advancing cement-based materials design through data science approaches,” RILEM Tech Lett, vol. 6, pp. 140–149, Dec. 2021, doi: 10.21809/rilemtechlett.2021.147.

P. Maslianko and Y. Sielskyi, “Data Science — definition and structural representation,” SRIT, no. 1, pp. 61–78, Jul. 2021, doi: 10.20535/SRIT.2308-8893.2021.1.05.

A. Asllani, Business analytics with management science models and methods. Upper Saddle River, New Jersey: Pearson Education, 2015.

A. T. Sasongko, “Studi Literatur Konsep dan Implementasi Sains Data untuk Memaksimalkan Kinerja Industri Manufaktur,” JTEKSIS, vol. 5, no. 2, pp. 90–94, Apr. 2023, doi: 10.47233/jteksis.v5i2.778.

R. Natras, B. Soja, and M. Schmidt, “Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting,” Remote Sensing, vol. 14, no. 15, p. 3547, Jul. 2022, doi: 10.3390/rs14153547.

S. Demir and E. K. Sahin, “An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost,” Neural Comput & Applic, vol. 35, no. 4, pp. 3173–3190, Feb. 2023, doi: 10.1007/s00521-022-07856-4.

T. Kavzoglu and A. Teke, “Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost),” Arab J Sci Eng, vol. 47, no. 6, pp. 7367–7385, Jun. 2022, doi: 10.1007/s13369-022-06560-8.

B. Jange, “Prediksi Harga Saham Bank BCA Menggunakan XGBoost,” ARBITRASE: Journal of Economics and Accounting vol. 3, no. 2, pp. 231-237, 2022, doi : 10.47065/arbitrase.v3i2.495.

L. Zhang, W. Bian, W. Qu, L. Tuo, and Y. Wang, “Time series forecast of sales volume based on XGBoost,” J. Phys.: Conf. Ser., vol. 1873, no. 1, p. 012067, Apr. 2021, doi: 10.1088/1742-6596/1873/1/012067.

S. Rautenbach, I. De Kock, and J. Grobler, “DATA SCIENCE FOR SMALL AND MEDIUM-SIZED ENTERPRISES: A STRUCTURED LITERATURE REVIEW,” SAJIE, vol. 32, no. 3, 2022, doi: 10.7166/33-3-2797.

A. Pamuji and H. S. Setiawan, “LINEAR REGRESSION FOR PREDICTION OF EXCESSIVE PERMISSIONS DATABASE ACCOUNT TRAFFIC”, J. Tek. Inform. (JUTIF), vol. 3, no.2, pp. 367–374, Apr. 2022, doi: 10.20884/1.jutif.2022.3.2.206.

S. Adiguno, Y. Syahra, and M. Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” j. sist. inf. trig. dhar. JURSI TGD, vol. 1, no. 4, p. 275, Jul. 2022, doi: 10.53513/jursi.v1i4.5331.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Computer Science, vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.

S. M. Robeson and C. J. Willmott, “Decomposition of the mean absolute error (MAE) into systematic and unsystematic components,” PLoS ONE, vol. 18, no. 2, p. e0279774, Feb. 2023, doi: 10.1371/journal.pone.0279774.

G. N. Ayuni and D. Fitrianah, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ”.

A. Alfani W.P.R., F. Rozi, and F. Sukmana, “PREDIKSI PENJUALAN PRODUK UNILEVER MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” jipi. jurnal. ilmiah. penelitian. dan. pembelajaran. informatika., vol. 6, no. 1, pp. 155–160, Jun. 2021, doi: 10.29100/jipi.v6i1.1910.

A. Abdurrahim and A. Hartono, “Pengaruh Cuaca Terhadap Perilaku Belanja Konsumen Minimarket: Studi Pada Minimarket Indomaret,” Ecombis. Rev. J. Ilm. Eco. and Bussines., vol. 10, no. 2, Jul. 2022, doi: 10.37676/ekombis.v10i2.2649.

N. Rose and L. Dolega, “It’s the Weather: Quantifying the Impact of Weather on Retail Sales,” Appl. Spatial Analysis, vol. 15, no. 1, pp. 189–214, Mar. 2022, doi: 10.1007/s12061-021-09397-0.

Published
2024-04-04
How to Cite
[1]
Muhammad Khusni Fikri, “OPTIMIZING RAW MATERIAL INVENTORY MANAGEMENT OF MSME PRODUCT USING EXTREME GRADIENT BOOSTING (XGBOOST) REGRESSOR ALGORITHM: A SALES PREDICTION APPROACH”, J. Tek. Inform. (JUTIF), vol. 5, no. 2, pp. 367-376, Apr. 2024.