SENTIMENT ANALYSIS OF INDONESIA'S CAPITAL CITY RELOCATION USING THREE ALGORITHMS: NAÏVE BAYES, KNN, AND RANDOM FOREST
Abstract
The relocation of Indonesia's capital city from Jakarta to the IKN Nusantara on the island of Borneo has become a trending topic that triggers conversations and opinions on various social media. The pros and cons of this policy are very pronounced in various media, especially on Twitter or X platform. The purpose of this research is to conduct a public sentiment analysis of public opinion related to the relocation of Indonesia's capital city. Data is taken from tweets comments collected during a certain period from June to September 2023. This research uses a Natural Language Processing approach with data pre-processing techniques to prepare the data before applying labeling and classification algorithms. This research tests the accuracy of three algorithms used in classification, namely Naïve Bayes Classifier, K-Nearest Neighbor, and Random Forest. The results of the data classification show that positive sentiment has a value of 36.8%, neutral sentiment is at 25%, and negative sentiment related to the relocation of the capital city is 38.1%. Then an accuracy test was carried out on the Naïve Bayes Classifier Algorithm method which found an accuracy value of 65.26%, the K-Nearest Neighbor Algorithm of 58.25%, and the Random Forest Algorithm of 45.05%. This shows that the Naïve Bayes Classifier Algorithm method has better accuracy than other algorithms in predicting classification in sentiment analysis. This research also identifies the frequency of key words that often appear in each sentiment which can be valuable information for monitoring public opinion on social media.
Downloads
References
H. Mayer, F. Sager, D. Kaufmann, and M. Warland, The Political Economy of Capital Cities, 1st ed. New York : Routledge, 2018: Routledge, 2017. doi: 10.4324/9781315545837.
J. Ningrum, I. Nafiah, F. Maurist Sitorus, F. Pratita Rari, and I. Siti Maryamah, “DAMPAK PEMINDAHAN IBU KOTA NEGARA TERHADAP PENDUDUK DAN KETENAGAKERJAAN DI PROVINSI JAWA BARAT (THE IMPACT OF CAPITAL CITY DISPLACEMENT TOWARDS POPULATION AND LABOR IN WEST JAVA PROVINCE),” Jurnal Kependudukan Indonesia |, vol. 15, no. Desember, pp. 133–144, 2020.
F. Farida, “Indonesia’s capital city relocation: A perspective of regional planning,” Jurnal Perspektif Pembiayaan dan Pembangunan Daerah, vol. 9, no. 3, pp. 221–234, Aug. 2021, doi: 10.22437/ppd.v9i3.12013.
A. Kodir, N. Hadi, I. K. Astina, D. Taryana, N. Ratnawati, and Idris, “The dynamics of community response to the development of the New Capital (IKN) of Indonesia,” in Development, Social Change and Environmental Sustainability, Routledge, 2021, pp. 57–61. doi: 10.1201/9781003178163-13.
D. Nugroho, “The Indonesian Journal of Politics and Policy Bentuk Ibu Kota Negara Nusantara Dalam Negara Kesatuan Republik Indonesia,” IJPP (The Indonesian Journal of Politics And Policy) vol. 4, no. 1, 2022, [Online]. Available: https://journal.unsika.ac.id/index.php/IJPP
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.
R. Y. Yanis, “Analisis Sentimen terhadap Debat Pemilihan Gubernur Jakarta Tahun 2017,” AITI, vol. 15, no. 2, pp. 128–134, Oct. 2018, doi: 10.24246/aiti.v15i2.128-134.
N. Munasatya and S. Novianto, “Natural Language Processing untuk Analisis Sentimen Presiden Jokowi Menggunakan Multi-Layer Perceptron Natural Language Processing for President Jokowi Sentiment Analysis using Multi-Layer Perceptron.” Techno.COM, Vol.19, No.3, Agustus 2020:237-244 [Online]. Available: https://t.co/dV56DeVJSA
F. A. Muttaqin and A. Mukaharil Bachtiar, “Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI TEKS MINING PADA APLIKASI PENGAWASAN PENGGUNAAN INTERNET ANAK ‘DODO KIDS BROWSER’”, 2016. [Online]. Available: http://www.bing.com/
J. Resti and F. Selva Jumeilah, “Terbit online pada laman web jurnal : http://jurnal.iaii.or.id Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” 2017. [Online]. Available: http://jurnal.iaii.or.id
A. Ashari Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” Jurnal Ilmiah Ilmu Komputer, vol. 2, no. 1, 2016, [Online]. Available: http://ejournal.fikom-unasman.ac.id
A. Kurniawan and S. Waluyo, “Penerapan Algoritma Naive Bayes Dalam Analisis Sentimen Pemindahan Ibukota Pada Twitter,” Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), pp. 35-41, 2022.
A. Deviyanto and M. D. R. Wahyudi, “PENERAPAN ANALISIS SENTIMEN PADA PENGGUNA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 3, no. 1, p. 1, Dec. 2018, doi: 10.14421/jiska.2018.31-01.
A. Rahman Hakim, W. Gata, A. Zevana Putri Widodo, O. Kurniawan, and A. Rama Syarif, “Analisis Perbandingan Algoritma Machine Learning Terhadap Sentimen Analis Pemindahan Ibu Kota Negara,” Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 2, 2023, doi: 10.35870/jti.
M. Syarifuddinn, “ANALISIS SENTIMEN OPINI PUBLIK MENGENAI COVID-19 PADA TWITTER MENGGUNAKAN METODE NAÏVE BAYES DAN KNN,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, Aug. 2020, doi: 10.33480/inti.v15i1.1347.
N. Hayatin, G. I. Marthasari, and L. Nuraini, “Optimization of Sentiment Analysis for Indonesian Presidential Election using Naïve Bayes and Particle Swarm Optimization,” Jurnal Online Informatika, vol. 5, no. 1, pp. 81–88, 2020, doi: 10.15575/join.v5i1.558.
M. Al Khadafi, Kurnia Paranitha Kartika, and Filda Febrinita, “PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN LEXICON BASED UNTUK ANALISIS SENTIMEN CYBERBULLYING PADA BPJS,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 725–733, Oct. 2022, doi: 10.36040/jati.v6i2.5633.
M. N. Maskuri, K. Sukerti, and R. M. Herdian Bhakti, “Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke Stroke Desease Predict Using KNN Algorithm,” Jurnal Ilmiah Intech : Information Technology Journal of UMUS, vol. 4, no. 1, Mei 2022.
G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart Journal, vol. 6, no. 2, pp. 167–178, Dec. 2020, doi: 10.31154/cogito.v6i2.270.167-178.
H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 81–86, Aug. 2020, doi: 10.33096/ilkom.v12i2.507.81-86.
D. Pramana, M. Afdal, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023, doi: 10.30865/mib.v7i3.6523.
T. Cahya Herdiyani and A. U. Zailani, “Sentiment Analysis Terkait Pemindahan Ibu Kota Indonesia Menggunakan Metode Random Forest Berdasarkan Tweet Warga Negara Indonesia Sentiment Analysis Related to Transportation of Indonesian Capital City Using Random Forest Method Based On Tweet Of Indonesian Citizens,” Jurnal Teknologi Sistem Informasi, Vol. 3, No. 2, Sept. 2022:154-165.
P. Arsi and R. Waluyo, “ANALISIS SENTIMEN WACANA PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” vol. 8, no. 1, pp. 147–156, Feb. 2021, doi: 10.25126/jtiik.202183944.
J. Teknika, R. K. Septiani, S. Anggraeni, and S. D. Saraswati, “Teknika 16 (02): 245-254 Klasifikasi Sentimen Terhadap Ibu Kota Nusantara (IKN) pada Media Sosial Menggunakan Naive Bayes,” IJCCS, vol. x, No.x, pp. 1–5, Sept. 2022.
Copyright (c) 2023 Joshua Muliawan, Erick Dazki, Rido Dwi Kurniawan
This work is licensed under a Creative Commons Attribution 4.0 International License.