THE CONCEPT OF NAIVE BAYES AND ITS SIMPLE USE FOR PREDICTION FINAL SCORE OF STUDENT EXAMINATION USING R LANGUAGE
Abstract
In this paper, we try to explain how to formulate the derivation of the Naive Bayes concept and apply it to a simple case. This is because usually users only use existing formulas or tools that are already available in a programming language regardless of where the formulas are implemented in the available tools come from. To familiarize users with understanding the state of art rather than a formulation, in this study we try to combine the concept and application of the Naive Bayes model formulation. Starting with the elaboration of the concept of derivation of the Naive Bayes formula, then we take a case study to begin to provide an overview of the implementation of the formula. In this study, we apply Naive Bayes to predict learning outcomes before ending at the end of the semester. The dataset was constructed using daily scores from student activity and quizzes. The calculation of this algorithm is enough to use the R language with case sampling in 4 classes of language theory and automata even semester 2017-2018 at the Department of Informatics Engineering, Faculty of Engineering, University of Muhammadiyah Ponorogo with a dataset size of 99 records (99 students) which are divided into 70 records for training data and the rest for test data. The final result is that the prediction accuracy is 78.6%, with the conclusion that the use of the Naive Bayes concept is good enough to be used to predict in helping
Downloads
References
S. Das dan A. K. Kolya, “Sense GST: Text mining & sentiment analysis of GST tweets by Naive Bayes algorithm,” dalam International Conference on Research in Computational Intelligence and Communication Networks, ICRCICN, 2017.
P. D. Atika dan Suhadi, “Implementasi Algoritma Naïve Bayes Classifier untuk Analisis Sentimen Customer pada Toko Online,” Factor Exacta, vol. 12, no. 4, pp. 303-314, 2020.
A. Kusuma dan A. Nugroho, “Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 5, no. 2, pp. 137-146, 2021.
R. Kosasih dan A. Alberto, “Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier,” LKOM Jurnal Ilmiah, vol. 13, no. 2, pp. 101-109, 2021.
C. S. Hsu, I. C. Chen dan C. L. Huang, “Image Classification Using Pairwise Local Observations Based Naive Bayes Classifier,” dalam Proceedings of APSIPA Annual Summit and Conference, 2015.
N. Venkateswaran, K. Nirmala dan V. K. C, “HoG Based Naive Bayes Classifier for Glaucoma Detection,” dalam Proceedings of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, 2017.
S. Basuki, S. Maghfiroh dan Y. Azhar, “Klasifikasi Tweets Tindak Kejahatan Berbahasa Indonesia Menggunakan Naive Bayes Setio,” Repositor, vol. 2, no. 7, 2020.
H. F. Putro, R. T. Vulandari dan W. L. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan Hakam,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, pp. 19-24, 2020.
M. Y. Bakhtiar, “Klasifikasi Penelitian Dosen Menggunakan Naïve Bayes Classifier dan Algoritma Genetika,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 5, no. 2, pp. 134-143, Desember 2020.
K. S. Nugroho, I. dan F. Marisa, “Naive Bayes classifier optimization for text classification on e-government using particle swarm optimization,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 1, pp. 21-26, 2020.
M. dan M. H. Santoso, “Analysis Naïve Bayes In Classifying Fruit by Utilizing Hog,” Journal of Informatics and Telecommunication Engineering, vol. 4, no. 1, pp. 151-160, Juli 2020.
A. R. Dikananda, I. Ali, F. A. R. Rinaldi dan I. , “Genre e-sport gaming tournament classification using machine learning technique based on decision tree, Naïve Bayes, and random forest algorithm,” dalam Annual Conference on Computer Science and Engineering Technology (AC2SET), 2021.
M. Munirah dan D. Desriyanti, “Prediction Of Compatibility Between Lecturers and The Subjects Using The Machine Learning with Naive Bayes Algorithm,” International Journal of Scientific & Engineering Research, vol. 11, no. 1, pp. 695-698, Januari 2020.
T. N. Wiyatno, I. Romli dan S. , “Naive Bayes Algorithm Implementation Based on Particle Swarm Optimization in Analyzing the Defect Product,” dalam InCEESS 2020, Bekasi, 2021.
F. Tempola dan A. Mubarak, “Optimization Naive Bayes using Particle Swarm Optimization in Volcanic Activities,” dalam International Conference on Science and Technology, 2020.
Copyright (c) 2022 Aslan Alwi, Munirah Munirah
This work is licensed under a Creative Commons Attribution 4.0 International License.