FISH FRESHNESS PREDICTION WITH CONVOLUTIONAL NEURAL NETWORK METHOD BASED ON FISH EYE IMAGE ANALYSIS
Abstract
The potential for fish resources in Bengkulu waters is abundant, but quality must be maintained for safety and selling value. Changes in the skin, eyes, gills and flesh of fish indicate a decrease in quality due to enzyme, chemical and bacterial activity. The process of sorting fish by fishermen or sellers is still often done manually, which is sometimes inaccurate due to limited vision. With advances in computing technology, classification algorithms are needed that can identify and differentiate between fresh fish and non-fresh fish. This research uses a Convolutional Neural Network with DenseNet201, VGG16, and InceptionV3 architecture. The dataset contains 880 Belato Alepes Djedaba fish eye images, with a ratio of 80:15:5 for train, validation, and test. DenseNet201 has the best performance compared to VGG16 and InceptionV3. Accuracy on DenseNet201 test data 98%, InceptionV3 95%, and VGG16 91%. The classification results of the best model using 8 images with various scenarios show that all images were successfully classified 100% correctly. This research makes a contribution to the field of fishery product processing technology which allows fish quality classification to be carried out quickly and accurately, as well as increasing efficiency in ensuring the quality of fish for consumption.
Downloads
References
Cakra, S. Syarif, H. Gani, A. Patombongi, and M. I. Andi, “Analisis Kesegaran Ikan Mujair Dan Ikan Nila Dengan Metode Convolutional Neural Network,” JURNAL SISTEM INFORMASI DAN TEKNIK KOMPUTER, vol. 7, no. 2, pp. 74–79, 2022.
G. Ashari Rakhmat and M. Fikri Haekal, “Peningkatan Performa MobilenetV3 dengan Squeeze-and-Excitation (Studi Kasus Klasifikasi Kesegaran Ikan Berdasarkan Mata Ikan),” Journal MIND Journal | ISSN, vol. 8, no. 1, pp. 27–41, 2023, doi: 10.26760/mindjournal.v8i1.27-41.
A. R. Singkam, A. P. Yani, and A. Fajri, “Keragaman Ikan Laut Dangkal Provinsi Bengkulu,” Jurnal Enggano, vol. 5, no. 3, pp. 424–438, 2020, doi: 10.31186/jenggano.5.3.424-438.
A. Agustyawan, “Pengolahan Citra untuk Membedakan Ikan Segar dan Tidak Segar Menggunakan Convolutional Neural Network,” IJAI(Indonesian Journal of Applied Informatics), vol. 5, no. 1, pp. 11–19, 2020.
T. Dwi Novianto and I. Made Susi Erawan, “Perbandingan Metode Klasifikasi pada Pengolahan Citra Mata Ikan Tuna,” Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya), pp. 216–223, 2020, doi: https://doi.org/10.20961/prosidingsnfa.v5i0.
S. Fauzi, P. Eosina, and G. F. Laxmi, “Implementasi Convolutional Neural Network Untuk Identifikasi Ikan Air Tawar,” Seminar Nasional Teknologi Informasi (SEMNATI) , vol. 2, pp. 163–167, 2019.
R. Fadiyah Alya and M. Wibowo, “CLASSIFICATION OF BATIK MOTIF USING TRANSFER LEARNING ON CONVOLUTIONAL NEURAL NETWORK (CNN),” vol. 4, no. 1, pp. 161–170, 2023, doi: 10.20884/1.jutif.2023.4.1.564.
D. M. Wonohadidjojo, “Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih,” Ultimatics : Jurnal Teknik Informatika, vol. 13, no. 1, p. 51, 2021.
D. F. Anas, I. Jaya, and Nurjanah, “Design and implementation of fish freshness detection algorithm using deep learning,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Dec. 2021. doi: 10.1088/1755-1315/944/1/012007.
R. Prabowo, D. Lestari, and * Korespondensi, “Klasifikasi Image Tumbuhan Obat Sirih Hijau dan Sirih Merah Menggunakan Metode Decision Tree Medicinal Plants Image Classification of Green Betel and Red Betel Using Decision Tree Method,” Online) Teknologi: Jurnal Ilmiah Sistem Informasi, vol. 12, no. 1, pp. 16–22, 2023, doi: 10.26594/teknologi.v13i1.3352.
M. Haryzal, “Identifikasi Kesegaran Ikan Hasil Tangkapan Menggunakan Mask R-Cnn,” University of Bengkulu, Bengkulu, 2022.
A. E. Wijaya, W. Swastika, and O. H. Kelana, “Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray,” SAINSBERTEK Jurnal Ilmiah Sains & Teknologi, vol. 2, no. 1, 2021.
E. Prasetyo, R. Purbaningtyas, R. Dimas Adityo, E. T. Prabowo, A. I. Ferdiansyah, and P. Korespondensi, “Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata A Comparison Of Convolution Neural Network For Classifying Milkfish’s Freshness On Eye Images,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 3, pp. 601–608, 2021, doi: 10.25126/jtiik.202184369.
N. D. Miranda, L. Novamizanti, and S. Rizal, “CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI SIDIK JARI MENGGUNAKAN RESNET-50,” Jurnal Teknik Informatika (Jutif), vol. 1, no. 2, pp. 61–68, Dec. 2020, doi: 10.20884/1.jutif.2020.1.2.18.
F. Mashuri and U. Enri, “Implementasi Transfer Learning Dalam Mendeteksi Penyakit Pada Daun Gandum,” JURNAL NUANSA INFORMATIKA, vol. 16, no. 1, pp. 66–77, 2022, [Online]. Available: https://journal.uniku.ac.id/index.php/ilkom
D. M. Wonohadidjojo, “Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih,” Ultimatics : Jurnal Teknik Informatika, vol. 13, no. 1, p. 51, 2021.
M. Sholihin and M. Rosidi Zamroni, “Identifikasi Kesegaran Ikan Berdasarkan Citra Insang Dengan Metode Convolution Neural Network,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, 2021, [Online]. Available: http://jurnal.mdp.ac.id
M. Christiawan, L. Willyanto Santoso, and D. Haryadi Setiabudi, “Deteksi Tingkat Kesegaran Ikan Menggunakan Metode Convolutional Neural Network Dengan Parameter Mata dan Warna Insang,” Jurnal Infra, vol. 9, no. 2, pp. 213–219, 2021.
Copyright (c) 2024 Robby Mahendra, Ruvita Faurina
This work is licensed under a Creative Commons Attribution 4.0 International License.