JOB-POSITION RECOMMENDER SYSTEM USING KNOWLEDGE BASED RECOMMENDATION METHOD AT ATMI POLYTECHNIC SURAKARTA
Abstract
ATMI Polytechnic Surakarta, one of the vocational colleges in Surakarta, currently has 152 employees and 13 managerial positions. The human resource management (HRM) unit has a strategy for selecting study program leaders and managers, but the procedure is still done by hand and is not based on standardized calculations. Therefore, a job-position recommender system is needed. This system aims to recommend candidates with the highest similarity score to the desired job criteria. The recommendation system was developed using the Knowledge-Based Recommendation method and the system development method employs a prototype. The stages included communication, quick planning, quick design modeling, prototype construction, and deployment, delivery and feedback. The calculation results show that an employee with the initials ADR has the highest similarity score for the job-position as head of the D3 Industrial Mechanical Engineering (TMI) study program with a score of 0.87. Therefore, this system can be used as a reference mechanism in building a job recommendation system at ATMI Polytechnic Surakarta.
Downloads
References
T. Toyba, T. A. Nengsih, and R. Fielnanda, “Analisis Kesesuaian Penempatan Kerja, Beban Kerja Terhadap Prestasi Karyawan Pada Bank 9 Syariah Jambi,” J. Penelit. Ilmu Ekon. dan Keuang. Syariah, vol. 1, no. 3, pp. 156–171, 2023.
S. Karam, M. Nagahi, V. L. Dayarathna (Nick), J. Ma, R. Jaradat, and M. Hamilton, “Integrating systems thinking skills with multi-criteria decision-making technology to recruit employee candidates,” Expert Syst. Appl., vol. 160, p. 113585, 2020, doi: 10.1016/j.eswa.2020.113585.
W. S. Prasetyaningtyas, K. Raharjo, and T. W. Afrianty, “Pengaruh Kepemimpinan Transformasional dan Budaya Organisasi Terhadap Knowledge Sharing dan Kepuasan Kerja,” J. Ekon. dan Bisnis, vol. 23, no. 2, pp. 379–399, 2020, doi: 10.24914/jeb.v23i2.3049.
S. A. Qalati, Z. Zafar, M. Fan, M. L. Sánchez Limón, and M. B. Khaskheli, “Employee performance under transformational leadership and organizational citizenship behavior: A mediated model,” Heliyon, vol. 8, no. 11, 2022, doi: 10.1016/j.heliyon.2022.e11374.
J. Okrah and B. Irene, “The Effect of Top Managers’ Years of Experience on Innovation,” Int. J. Innov. Stud., 2023, doi: 10.1016/j.ijis.2023.03.004.
I. Beltrán-Martín and J. C. Bou-Llusar, “Examining the intermediate role of employee abilities, motivation and opportunities to participate in the relationship between HR bundles and employee performance,” BRQ Bus. Res. Q., vol. 21, no. 2, pp. 99–110, 2018, doi: 10.1016/j.brq.2018.02.001.
S. N. Ambo, R. Mujiastuti, and E. Susilowati, “Analisis Pemilihan Tenaga Kependidikan Terbaik Menggunakan Metode Weighted Product,” JISA(Jurnal Inform. dan Sains), vol. 2, no. 2, pp. 34–40, 2019, doi: 10.31326/jisa.v2i2.491.
R. N. Husaini and S. Sutama, “Manajemen Sumber Daya Manusia Dalam Instansi Pendidikan,” Didakt. J. Pendidik. dan Ilmu Pengetah., vol. 21, no. 1, pp. 60–75, 2021, doi: 10.30651/didaktis.v21i1.6649.
M. Mesran, J. Afriany, and S. H. Sahir, “Efektifitas Penilaian Kinerja Karyawan Dalam Peningkatan Motivasi Kerja Menerapkan Metode Rank Order Centroid (ROC) dan Additive Ratio Assessment (ARAS),” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 813, 2019, doi: 10.30645/senaris.v1i0.88.
S. Rahayu and A. Sindar, “Sistem Pendukung Keputusan Penilaian Kinerja Guru Menggunakan Metode Simple Additive Weighting,” J. Ilmu Komput. dan Inform., vol. 2, no. 2, pp. 103–112, 2022, doi: 10.54082/jiki.28.
R. S. Hayati and S. Aliyah, “Sistem Pendukung Keputusan Promosi Jabatan Menggunakan Metode Multi Attribute Utility Theory,” IT (Informatic Tech. J., vol. 8, no. 2, p. 103, 2021, doi: 10.22303/it.8.2.2020.103-111.
S. Sunarti, “Prediksi Promosi Jabatan Karyawan Dengan Algoritma C4.5 (Studi Kasus: Apartemen Senayan Jakarta),” Techno.COM, vol. 18, no. 4, pp. 288–298, 2019, doi: 10.33633/tc.v18i4.2471.
B. F. A. Santoso and I. Susilawati, “Decision Support System of Public Service Satisfaction Using Topsis Method At Regional I BKN Yogyakarta,” J. Tek. Inform., vol. 2, no. 1, pp. 27–32, 2021, doi: 10.20884/1.jutif.2021.2.1.42.
A. Ahmad and Y. I. Kurniawan, “Sistem Pendukung Keputusan Pemilihan Pegawai Terbaik Menggunakan Simple Additive Weighting,” J. Tek. Inform., vol. 1, no. 2, pp. 101–108, 2020, doi: 10.20884/1.jutif.2020.1.2.14.
P. Yoko, R. Adwiya, and W. Nugraha, “Penerapan Metode Prototype dalam Perancangan Aplikasi SIPINJAM Berbasis Website pada Credit Union Canaga Antutn,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 7, no. 3, p. 212, 2019, doi: 10.24843/jim.2019.v07.i03.p05.
T. Pricillia and Zulfachmi, “Perbandingan Metode Pengembangan Perangkat Lunak (Waterfall, Prototype, RAD),” J. Bangkit Indones., vol. 10, no. 1, pp. 6–12, 2021, doi: 10.52771/bangkitindonesia.v10i1.153.
K. A. Obayes and A. Hamzah, “Using of Prototyping in Develop an Employee Information Management,” Meas. Sensors, vol. 24, no. October, p. 100557, 2022, doi: 10.1016/j.measen.2022.100557.
I. Sommerville, Software Engineering (9th ed.; Boston, Ed.). Massachusetts: Pearson Education. 2011.
D. Karyaningsih, D. Fernando, A. R. Sofian, and F. Luthfi, “Augmented Reality Virtual Guide Museum Multatuli Rangkasbitung Based on Android,” JISA(Jurnal Inform. dan Sains), vol. 5, no. 2, pp. 173–180, 2022, doi: 10.31326/jisa.v5i2.1434.
M. Muttaqin et al., Data Science dan Pembelajaran Mesin, 1st ed. Yayasan Kita Menulis, 2023.
S. N. Mohanty, A. Elngar, S. Jain, P. Gupta, and J. M. Chatterjee, Recommender System with Machine Learning and Artificial Intelligence Practical Tools and Applications in Medical, Agricultural and Other Industries. USA: Wiley Global Headquarters, 2020.
K. Tarnowska, Z. W. Ras, and L. Daniel, Recommender System for Improving Customer Loyalty. Springer, 2020.
D. Jannach, Z. Markus, A. Felfernig, and G. Friedrich, Recommender Systems. Cambridge University Press, 2010.
R. K. Mishra, J. A. A. Jothi, S. Urolagin, and K. Irani, “Knowledge Based Topic Retrieval For Recommendations And Tourism Promotions,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 1, p. 100145, 2023, doi: 10.1016/j.jjimei.2022.100145.
V. Atina and D. Hartanti, “Knowledge Based Recommendation Modeling for Clothing Product Selection Recommendation System,” J. Tek. Inform., vol. 3, no. 5, pp. 1407–1413, 2022, doi: 10.20884/1.jutif.2022.3.5.584.
A. Agarwal, D. S. Mishra, and S. V. Kolekar, “Knowledge-based recommendation system using semantic web rules based on Learning styles for MOOCs,” Cogent Eng., vol. 9, no. 1, 2022, doi: 10.1080/23311916.2021.2022568.
D. Wendimu and K. Biredagn, “Developing A Knowledge-Based System For Diagnosis And Treatment Recommendation Of Neonatal Diseases,” Cogent Eng., vol. 10, no. 1, 2023, doi: 10.1080/23311916.2022.2153567.
V. Atina and D. Hartanti, “Clothing Product Selection Recommendation System With Knowledge Based Recommendation Method,” Proceeding Int. Conf. Sci. Heal. Technol., pp. 344–357, 2022, doi: 10.47701/icohetech.v3i1.2267.
S. Sutono, A. Musrifah, and H. L. Fauzy, “Metode Knowledge Based Recommendation Dengan Backward Chaining Untuk Perancangan Aplikasi E-Commerce,” Media J. Inform., vol. 14, no. 2, p. 63, 2022, doi: 10.35194/mji.v14i2.2555.
M. Muhith, D. Hartanti, and J. Maulindar, “Sistem Rekomendasi Pemilihan Paket Instalasi CCTV menggunakan Metode Knowledge Based pada CCTV Center Delanggu,” Pros. Semin. Nas. Teknol. Inf. dan Bisnis, pp. 222–227, 2022.
P. Liang, Y. Xu, W. Li, Y. Zhang, and Q. Tian, “A case-based reasoning method of recognizing liquefaction pits induced by 2021 MW 7.3 Madoi earthquake,” Earthq. Res. Adv., vol. 3, no. 1, p. 100182, 2023, doi: 10.1016/j.eqrea.2022.100182.
N. Rico, P. Huidobro, A. Bouchet, and I. Díaz, “Similarity measures for interval-valued fuzzy sets based on average embeddings and its application to hierarchical clustering,” Inf. Sci. (Ny)., vol. 615, pp. 794–812, 2022, doi: 10.1016/j.ins.2022.10.028.
P. Fränti and R. Mariescu-Istodor, “Soft Precision and Recall,” Pattern Recognit. Lett., vol. 167, pp. 115–121, 2023, doi: 10.1016/j.patrec.2023.02.005.
A. Firdonsyah and A. Fauzan, “Rancang Bangun Sistem Pendukung Keputusan Perubahan Jabatan Kepegawaian Menggunakan Decision Table,” J. Aikomternate, vol. 1, no. 1, pp. 1–13, 2021.
L. Meilina, N. P. Sastra, and D. M. Wiharta, “Lecturers Admissions Selections Model Using Fuzzy K-Nearest Neighbor Method,” J. Tek. Inform., vol. 4, no. 2, pp. 449–456, 2023, [Online]. Available: https://doi.org/10.52436/1.jutif.2023.4.2.740
Copyright (c) 2024 Dinita Christy Pratiwi, Vihi Atina, Joni Maulindar
This work is licensed under a Creative Commons Attribution 4.0 International License.