STORAGE SERVER DATABASE UTILIZATION FORECASTING USING HOLT-WINTERS AND ARIMA METHODS IN E-GOVERNMENT SYSTEM. STUDY AT KEMENKEU RI

  • Adinda Krida Wicaksono Master of Computer Science, Faculty of Information Technology, Universitas Budi Luhur, Indonesia
  • Teguh Prasetyo Master of Computer Science, Faculty of Information Technology, Universitas Budi Luhur, Indonesia
  • Nazori Az Master of Computer Science, Faculty of Information Technology, Universitas Budi Luhur, Indonesia
Keywords: ARIMA, Capacity Planning, data mining, Holt-Winter, Prediction, Storage

Abstract

Storage is a storage medium which is an important part of the system infrastructure. Storage utilization is one of the variables in determining the needs and performance of a system. If the storage is lacking or depleted it will cause the system to be hampered and the possibility of interference occurring. There were eight complaints or reports of system disturbances recorded in the Ministry of Finance's ticketing service desk application caused by anomalies in storage or disk capacity. Things like this can be anticipated if we know the storage capacity requirements for the future. In compiling ICT capacity analysis at Pusintek there has been no use of past data to plan future storage requirements. The use of data mining algorithms can be used to obtain forecast values from storage utilization. The use of the ARIMA model and Holt-Winters Exponential Smoothing as a method used to predict inventory is considered to be a fairly accurate model. Both algorithms are used to compare which accuracy is better in predicting storage requirements by measuring RMSE. Research data was obtained from monthly utilization reports from January 2021 to December 2022. From the evaluation results it can be concluded that forecasting storage server database utilization using the Holt-Winters method is better than the ARIMA method with the RMSE results for the Holt-Winters method being 14332.661717740748 and the RMSE method ARIMA is 20498.977982137938. The results of this forecasting can be utilized in planning database server storage needs.

Downloads

Download data is not yet available.

References

M. Taufiq, D. Sugiarto, and A. Rochman, “Peramalan Utilisasi Perangkat Jaringan dan Bandwidth Dengan Metode Holt-Winters dan Multi Layer Perceptron,” Ultim. J. Tek. Inform., vol. 12, no. 1, pp. 42–51, 2020, doi: 10.31937/ti.v12i1.1575.

E. P. Mariz et al., “Sistem Informasi Prediksi Stok Barang Menggunakan Metode Holt Winters Pada Cv Budi Jaya Mandiri,” J. Ilm. Fak. Ilk. Univ. Bina Darma, no. April 2018, pp. 0–11, 2017.

L. Nababan et al., “PENGGUNAAN METODE WINTER EXPONENTIAL SMOOTHING,” J. Sist. Inf. Kaputama, vol. 6, no. 2, pp. 373–381, 2022.

A. Asrirawan, S. U. Permata, and M. I. Fauzan, “Pendekatan Univariate Time Series Modelling untuk Prediksi Kuartalan Pertumbuhan Ekonomi Indonesia Pasca Vaksinasi COVID-19,” Jambura J. Math., vol. 4, no. 1, pp. 86–103, 2022, doi: 10.34312/jjom.v4i1.11717.

R. Rumini and N. Norhikmah, “Perbandingan Metode Arima Dan Exponential Smoothing Holt-Winters Untuk Peramalan Data Kunjungan,” Sistemasi, vol. 9, no. 3, p. 622, 2020, doi: 10.32520/stmsi.v9i3.975.

I. R. Akolo, “Perbandingan Exponential Smoothing Holt-Winters Dan Arima Pada Peramalan Produksi Padi Di Provinsi Gorontalo,” J. Technopreneur, vol. 7, no. 1, pp. 20–26, 2019, doi: 10.30869/jtech.v7i1.314.

N. R. Wiyanti, P. S. Manajemen, K. Bekasi, and L. Belakang, “Analisis Perbandingan Model Arima Dan Exponential Smoothing Dalam Memprediksi,” JBME J. Bisnis Manaj. dan Ekon., vol. 19, no. 2, pp. 1–10, 2019.

T. Safitri, N. Dwidayati, and K. Kunci, “Perbandingan Peramalan Menggunakan Metode Exponential Smoothing Holt-Winters dan Arima,” Unnes J. Math., vol. 6, no. 1, pp. 48–58, 2017, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm

E. Staviana, Kusrini, and E. T. Luthfi, “Sistem Peramalan Kebutuhan Stok Obat Menggunakan Metode Holt-Winters,” J. Informa, J. Penelit. Dan Pengadian Masyarakat, Politek. Indonusa, Surakarta, vol. 5, 2019, doi: https://doi.org/10.46808/informa.v5i4.154.

A. T. Namel, M. A. Sahib, and S. M. Hasan, “Bandwidth Utilization Prediction in LAN Network Using Time Series Modeling,” Iraqi J. Comput. Commun. Control Syst. Eng., pp. 78–89, 2019, doi: 10.33103/uot.ijccce.19.2.9.

Ema Utami; Hanif Al Fatta; Muhammad Surahmanto, “Prediksi Kapasitas Kargo Pada Bandara Deo Sorong,” Insect (Informatics Secur. J. Tek. Inform., vol. 8, no. 1, pp. 58–66, 2022, [Online]. Available: http://www.ejournal.um-sorong.ac.id/index.php/insect/article/view/1912

D. Kurniawati, R. C. Buwono, and A. M. M. D. . Satriya, “EKSPLORASI SINGLE MOVING AVERAGE UNTUK PERAMALAN PERSEDIAAN BARANG,” JIRK. J. Innov. Res. Knowl., vol. 2, no. 5, pp. 2239–2246, 2022.

Harsiti, Z. Muttaqin, and E. Srihartini, “Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 1, pp. 12–16, 2022, doi: 10.30656/jsii.v9i1.4426.

Mustika et al., Data Mining dan Aplikasinya. Penerbit Widina Bhakti Persada Bandung, 2021.

M. A. Witten, I.H., Eibe, F.and Hall, Data mining Practical Machine Learning Tools and Techniques 3rd Edition. Elsevier, 2011.

B. Santosa, Data mining : Teknik pemanfaatan data untuk keperluan bisnis. Yogyakarta: Graha Ilmu, 2007.

J. P. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques. Elsevier, 2012.

M. N. F. Rahmi Roza, Tutorial Sistem Informasi Prediksi Jumlah Pelanggan Menggunakan Metode Regr... - Google Books. Kreatif Industri Nusantara, 2020. [Online]. Available: https://www.google.co.id/books/edition/Tutorial_Sistem_Informasi_Prediksi_Jumla/ixH9DwAAQBAJ?hl=id&gbpv=1&dq=XAMPP+adalah+perangkat+lunak+bebas,+yang+mendukung+banyak+sistem+operasi,+merupakan+kompilasi+dari+beberapa+program.+XAMPP+merupakan+tool+yang+men

W. Y. Rusyida, Teknik Peramalan: Metode ARIMA dan Holt Winter. Penerbit NEM, 2022. [Online]. Available: https://books.google.co.id/books?id=z9-mEAAAQBAJ

D. Nugraha, I. P. Wardana, and M. O. Adnyana, “Pendugaan Produksi dan Tantangan Usahatani Kedelai di Indonesia Menggunakan Metode ARIMA,” J. Penelit. Pertan. Tanam. Pangan, vol. 2, no. 3, p. 155, 2019, doi: 10.21082/jpptp.v2n3.2018.p155-163.

D. T. Larose, Data Mining Methods & Models. Wiley-Interscience, 2006. [Online]. Available: https://books.google.co.id/books?id=xveeIUOdkfEC

R. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T.P., Shearer, C., & Wirth, CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, 2000.

Published
2023-09-21
How to Cite
[1]
Adinda Krida Wicaksono, Teguh Prasetyo, and Nazori Az, “STORAGE SERVER DATABASE UTILIZATION FORECASTING USING HOLT-WINTERS AND ARIMA METHODS IN E-GOVERNMENT SYSTEM. STUDY AT KEMENKEU RI”, J. Tek. Inform. (JUTIF), vol. 4, no. 6, pp. 1399-1408, Sep. 2023.