IMPLEMENTATION OF RANDOM FOREST AND SMOTE METHODS FOR ECONOMIC STATUS CLASSIFICATION IN CIREBON CITY

  • Neneng Nur Sholihah Informatics, Faculty of Science and Technology, Universitas Teknologi Yogyakarta, Indonesia
  • Arief Hermawan Informatics, Faculty of Science and Technology, Universitas Teknologi Yogyakarta, Indonesia
Keywords: classification, economic status, random forest, SMOTE

Abstract

The Indonesian government has tried various methods to eradicate poverty throughout the country, one of which is the fair distribution of social assistance to households based on their economic status classification. The determination of social assistance recipients can be influenced by political factors or personal relationships and can be misused, leading to assistance being given to individuals with specific political connections or support. This research aims to develop a household economic status classification system in Cirebon City using the Random Forest algorithm to address these issues. The data used in this research experienced an imbalance in the number of class instances, where the high-class instances were much fewer than the low and medium classes. To address this, the Synthetic Minority Oversampling Technique (SMOTE) was employed. In this study, various testing scenarios were conducted to obtain the best model for accurately predicting household economic status. Based on the research results, the best testing was achieved using Random Forest and SMOTE with a random state of 0, obtaining an accuracy of 93% and excellent performance in classifying each class. When testing unlabeled data, Random Forest successfully predicted 24 out of 30 actual data, resulting in an accuracy rate of 80%. Although this accuracy is lower than what was achieved by Random Forest and SMOTE with a random state of 0, it can be said that the application successfully classifies household economic status in Cirebon City effectively.

Downloads

Download data is not yet available.

References

The International Society of Gynecological Endocrinology (ISGE), “List of developing countries | ISGE 2018,” 2018. https://isge2018.isgesociety.com/registration/list-of-developing-countries/ (accessed Jul. 08, 2023).

V. Houlden, G.-M. Tsarouchi, and N. Walmsley, “The Impact of Climate Change on the Achievement of the Post 2015 Sustainable Development Goals,” in Climate and Development Knowledge Network, South Africa: Climate and Development Knowledge Network (CDKN), 2015.

D. Seftiana, O. D. Arleina, S. Dewi, R. Amalia, and F. Fachrunisah, “Klasifikasi Rumah Tangga Miskin di Kabupaten Jombang dengan Pendekatan Random Forest Cart,” in Pekan Ilmiah Mahasiswa Nasional Program Kreativitas Mahasiswa-Penelitian 2014, Indonesian Ministry of Research, Technology and Higher Education, 2014.

N. Halimatussa’diyah, G. W. Sasmito, and D. Apriliani, “Aplikasi Klasifikasi Status Kemiskinan Warga di Kabupaten Tegal,” Komputika: Jurnal Sistem Komputer, vol. 10, no. 1, pp. 61–67, 2021, doi: 10.34010/komputika.v10i1.3701.

D. Maryani and R. R. E. Nainggolan, Pemberdayaan Masyarakat. Deepublish, 2019.

O. Purba et al., Dasar Hukum & Analisis Tata Kelola Ibu Kota Negara dari Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2023.

Badan Pusat Statistik, Pertumbuhan Ekonomi Kota Cirebon Tahun 2021. Cirebon, 2022.

Badan Pusat Statistik, Pertumbuhan Ekonomi Kota Cirebon Tahun 2022. Cirebon, 2023.

Badan Pusat Statistik, Indikator Kesejahteraan Rakyat Kabupaten Cirebon Tahun 2022. Cirebon, 2022.

Badan Pusat Statistik, Profil Kemiskinan Kota Cirebon Tahun 2022. CIrebon, 2022.

N. Nofriani, “Machine Learning Application for Classification Prediction of Household’s Welfare Status,” JITCE (Journal of Information Technology and Computer Engineering), vol. 4, no. 02, pp. 72–82, Sep. 2020, doi: https://doi.org/10.25077/jitce.4.02.72-82.2020.

M. Rosfadhila, N. Toyamah, B. Sulaksono, S. Devina, R. J. Sodo, and M. Syukri, “Kajian Cepat Pelaksanaan Program Bantuan Langsung Tunai (BLT) 2008 dan Evaluasi Penerima Program BLT 2005 di Indonesia,” SMERU Research Institute, pp. 1–107, 2011.

F. Taruh, Motivasi Kerja (Meniti Suara Hati Menolak Perilaku Korupsi), Cetakan Pertama. Yogyakarta: Deepublish, 2020.

M. C. Ulum, Perilaku Organisasi Menuju Orientasi Pemberdayaan, Cetakan Pertama. Malang: Universitas Brawijaya Press, 2016.

A. Liliweri, Prasangka, Konflik, dan Komunikasi Antarbudaya, Edisi Kedua. Prenada Media, 2018.

R. Febari, Politik Pemberantasan Korupsi, Cetakan Pertama. Jakarta: Yayasan Pustaka Obor Indonesia, 2015.

A. C. Müller and S. Guido, Introduction to Machine Learning with Python, First Edition. Sebastopol: O’Reilly Media, Inc., 2016.

A. Rachmat and Y. Lukito, “Sentipol: Dataset Sentimen Komentar pada Kampanye Pemilu Presiden Indonesia 2014 dari Facebook Page,” Konferensi Nasional Teknologi Informasi dan Komunikasi 2017, pp. 218–228, 2016.

D. H. Fudholi, “Presensi Kelas Berbasis Pola Wajah dan Tersenyum Menggunakan Deep Learning,” Tesis, Universitas Islam Indonesia, Yogyakarta, 2023.

A. Burkov, The Hundred-Page Machine Learning, vol. 1. Andriy Burkov Quebec City, QC, Canada, 2019.

W. Nurpadillah, “Metode Ensemble pada Pohon Klasifikasi Tunggal untuk Klasifikasi Status Kemiskinan Rumah Tangga di Provinsi Jawa Barat,” Skripsi, Institut Pertanian Bogor, Bogor, 2019.

L. Nuzula, A. Prahutama, and A. R. Hakim, “Klasifikasi Status Kemiskinan Rumah Tangga dengan Metode Support Vector Machines (SVM) dan Classification and Regression Trees (CART) Menggunakan GUI R (Studi Kasus di Kabupaten Wonosobo Tahun 2018),” Jurnal Gaussian, vol. 9, no. 4, pp. 525–534, 2020, doi: https://doi.org/10.14710/j.gauss.v9i4.29449.

N. G. T. Hidayatulloh, “Perbandingan Kinerja Random Forest dan Double Random Forest untuk Klasifikasi Status Kemiskinan di Level Kabupaten/Kota,” Skripsi, Institut Pertanian Bogor, Bogor, 2022.

F. N. Umma, B. Warsito, and I. M. Di Asih, “Klasifikasi Status Kemiskinan Rumah Tangga dengan Algoritma C5. 0 di Kabupaten Pemalang,” Jurnal Gaussian, vol. 10, no. 2, pp. 221–229, 2021, doi: https://doi.org/10.14710/j.gauss.10.2.221-229.

L. B. Adzy, A. Asriyanik, and A. Pambudi, “Algoritma Naïve Bayes untuk Klasifikasi Kelayakan Penerima Bantuan Iuran Jaminan Kesehatan Pemerintah Daerah Kabupaten Sukabumi,” Jurnal Mnemonic, vol. 6, no. 1, pp. 1–10, May 2023, doi: https://doi.org/10.36040/mnemonic.v6i1.5714.

H. Hermanto, A. Mustopa, and A. Y. Kuntoro, “Algoritma Klasifikasi Naive Bayes dan Support Vector Machine dalam Layanan Komplain Mahasiswa,” JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), vol. 5, no. 2, pp. 211–220, Feb. 2020, doi: https://doi.org/10.33480/jitk.v5i2.1181.

E. S. Eriana and S. Farizy, Sistem Informasi Manajemen, Cetakan Pertama. Tangerang Selatan: Unpam Press, 2021.

D. A. Rusdah and H. Murfi, “XGBoost in Handling Missing Values for Life Insurance Risk Prediction,” SN Appl Sci, vol. 2, pp. 1–10, Jul. 2020, doi: 10.1007/S42452-020-3128-Y.

Y. R. Dewi, “Analisis Perbandingan Akurasi Imputasi Data Mean dan Median untuk Data Impor Pupuk,” AGRIMAS, vol. 6, no. 1, pp. 44–45, Jun. 2022.

M. L. Suliztia, “Penerapan Analisis Random Forest pada Prototype Sistem Prediksi Harga Kamera Bekas Menggunakan Flask,” Skripsi, Universitas Islam Indonesia, Yogyakarta, 2020.

O. Somantri, W. E. Nugroho, and A. R. Supriyono, “Penerapan Feature Selection pada Algoritma Decision Tree untuk Menentukan Pola Rekomendasi Dini Konseling,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, pp. 272–279, Dec. 2022, doi: http://dx.doi.org/10.30865/json.v4i2.5267.

I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Creative Information Technology Journal, vol. 6, no. 1, pp. 1–11, 2020.

E. Andini, M. R. Faisal, R. Herteno, R. A. Nugroho, and F. Abadi, “Peningkatan Kinerja Prediksi Cacat Software dengan Hyperparameter Tuning pada Algoritma Klasifikasi Deep Forest,” Jurnal Mnemonic, vol. 5, no. 2, pp. 119–127, Aug. 2022, doi: https://doi.org/10.36040/mnemonic.v5i2.4793.

M. Mustaqim, B. Warsito, and B. Surarso, “Combination of synthetic minority oversampling technique (Smote) and backpropagation neural network to handle imbalanced class in predicting the use of contraceptive implants,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 5, no. 2, pp. 116–127, Jul. 2019, doi: 10.26594/register.v5i2.1705.

L. Qadrini, H. Hikmah, and M. Megasari, “Oversampling, Undersampling, SMOTE SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, pp. 386–391, Sep. 2022, doi: https://doi.org/10.47065/josyc.v3i4.2154.

A. Primajaya and B. N. Sari, “Random Forest Algorithm for Prediction of Precipitation,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 1, no. 1, pp. 27–31, 2018, doi: http://dx.doi.org/10.24014/ijaidm.v1i1.4903.

D. Ismafillah, T. Rohana, and Y. Cahyana, “Analisis Algoritma Pohon Keputusan untuk Memprediksi Penyakit Diabetes Menggunakan Oversampling SMOTE,” INFOTECH: Jurnal Informatika & Teknologi, vol. 4, no. 1, pp. 27–36, Jun. 2023, doi: https://doi.org/10.37373/infotech.v4i1.452.

M. W. B. Santoso, R. C. Wihandika, and M. A. Rahman, “Ekstraksi Ciri untuk Klasifikasi Jenis Kelamin berbasis Citra Wajah menggunakan Metode Compass Local Binary Patterns,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, pp. 10556–10563, Jan. 2019.

I. A. Dahlan, “Klasifikasi Cuaca Provinsi DKI Jakarta Menggunakan Algoritma Random Forest dengan Teknik Oversampling,” Jurnal Teknoinfo, vol. 16, no. 1, pp. 87–92, 2022, doi: https://doi.org/10.33365/jti.v16i1.1533.

J. Widiastuti, “Klasifikasi Pembiayaan Warung Mikro Menggunakan Metode Random Forest dengan Teknik Sampling Kelas Imbalanced (Studi Kasus: Data Nasabah Pembiayaan Warung Mikro Bank Syariah Mandiri KC Jambi),” Tugas Akhir, Universitas Islam Indonesia, Yogyakarta, 2018.

R. G. Gallager, “Claude E. Shannon: a retrospective on his life, work, and impact,” IEEE Trans Inf Theory, vol. 47, no. 7, pp. 2681–2695, 2001, doi: 10.1109/18.959253.

M. S. Haris, M. Anshori, and A. N. Khudori, “Prediction of Stunting Prevalence in East Java Province with Random Forest Algorithm,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 1, pp. 11–13, 2023, doi: https://doi.org/10.20884/1.jutif.2023.4.1.614.

D. A. Rachmawati, N. A. Ibadurrahman, J. Zeniarja, and N. Hendriyanto, “Implementation of The Random Forest Algorithm in Classifying The Accuracy of Graduation Time for Computer Engineering Students at Dian Nuswantoro University,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 3, pp. 565–572, 2023, doi: https://doi.org/10.52436/1.jutif.2023.4.3.920.

P. Sejati, M. Munawar, M. Pilliang, and H. Akbar, “Studi Komparasi Naive Bayes, K-Nearest Neighbor, dan Random Forest untuk Prediksi Calon Mahasiswa yang Diterima atau Mundur,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, pp. 1341–1348, 2022, doi: http://dx.doi.org/10.25126/jtiik.201743299.

P. Rosyani, “Klasifikasi Citra Menggunakan Metode Random Forest dan Sequential Minimal Optimization (SMO),” JUSTIN (Jurnal Sistem dan Teknologi Informasi), vol. 9, no. 2, pp. 132–134, 2021, doi: 10.26418/justin.v9i2.44120.

Published
2023-12-23
How to Cite
[1]
N. N. Sholihah and A. Hermawan, “IMPLEMENTATION OF RANDOM FOREST AND SMOTE METHODS FOR ECONOMIC STATUS CLASSIFICATION IN CIREBON CITY”, J. Tek. Inform. (JUTIF), vol. 4, no. 6, pp. 1387-1397, Dec. 2023.