HARDWARE DESIGN OF THE TOUCHLESS HAND CODE AND CONVOLUTIONAL NEURAL NETWORKS - BASED AUTOMATIC DOOR SECURITY SYSTEM
Abstract
The spread of viruses and bacteria through touching door surfaces is essential in maintaining public hygiene and health. In this context, a hand-coded touchless automatic door hardware design has been developed to reduce the spread of diseases through touch. This research aims to create a plan that includes interface development and hardware design to open and close doors automatically without contact. In this research, the automatic door hardware response is tested based on the numeric input from the hand code represented by the numeric database. The input and output control is connected to Python's graphical user interface (GUI). The GUI system design involves tools to connect the Python programming language and the Arduino microcontroller. Based on the experimental results, the hardware design of the automatic door security system based on hand code and Convolutional Neural Networks functions appropriately.
Downloads
References
P. N. Mukomena et al., “Nosocomial infections and associated risk factors at two tertiary healthcare facilities in Lusaka and Copperbelt Provinces, Zambia,” Scientific African, vol. 20, p. e01644, Jul. 2023, doi: 10.1016/j.sciaf.2023.e01644.
M. Ahadi, A. H. Shams, and M. Yadollahi, “Effect of COVID-19 pneumonia infection control protocols on nosocomial infection incidence in trauma patients,” Chinese Journal of Traumatology, May 2023, doi: 10.1016/j.cjtee.2023.05.001.
L. Wang, K. Ni, Y. Wang, H. Lu, J. Fang, and C. Chen, “Nosocomial Infections in Adult Patients Receiving Extracorporeal Membrane Oxygenation in China: A Retrospective Cohort Study,” American Journal of Infection Control, Apr. 2023, doi: 10.1016/j.ajic.2023.04.010.
S. Bhattacharyya, K. Dey, A. R. Paul, and R. Biswas, “A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room,” Chaos, Solitons & Fractals, vol. 139, p. 110294, Oct. 2020, doi: 10.1016/j.chaos.2020.110294.
U. Anand et al., “The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs,” Environmental Research, vol. 225, p. 115612, May 2023, doi: 10.1016/j.envres.2023.115612.
Y. Tandjaoui-Lambiotte, A. Lomont, P. Moenne-Locoz, D. Seytre, and J. R. Zahar, “Spread of viruses, which measures are the most apt to control COVID-19?,” Infectious Diseases Now, vol. 53, no. 2, p. 104637, Mar. 2023, doi: 10.1016/j.idnow.2022.12.002.
Q. Chen, “Can we migrate COVID-19 spreading risk?,” Front. Environ. Sci. Eng., vol. 15, no. 3, p. 35, Jun. 2021, doi: 10.1007/s11783-020-1328-8.
Ambarwati and I. N. Pramudaningsih, “Pengetahuan dalam pencegahan penularan corona virus disease (covid),” Jurnal Keperawatan dan Kesehatan Masyarakat STIKES Cendekia Utama Kudu, vol. 11, no. 2, pp. 108–116, 2022.
N. Effendy, S. Subagja, and A. Faisal, “Prediksi penyakit jantung koroner (PJK) berdasarkan faktor risiko menggunakan jaringan syaraf tiruan backpropagation,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 2008, pp. E19-24.
B. P. Adedeji and G. Kabir, “A feedforward deep neural network for predicting the state-of-charge of lithium-ion battery in electric vehicles,” Decision Analytics Journal, p. 100255, Jun. 2023, doi: 10.1016/j.dajour.2023.100255.
J. Yang and J. Zhao, “A novel parallel merge neural network with streams of spiking neural network and artificial neural network,” Information Sciences, vol. 642, p. 119034, Sep. 2023, doi: 10.1016/j.ins.2023.119034.
Y. Zhou, P. A. Ejegwa, and S. E. Johnny, “Generalized Similarity Operator for Intuitionistic Fuzzy Sets and its Applications Based on Recognition Principle and Multiple Criteria Decision Making Technique,” Int J Comput Intell Syst, vol. 16, no. 1, p. 85, May 2023, doi: 10.1007/s44196-023-00245-2.
B. Singh et al., “Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data,” Sci Rep, vol. 13, no. 1, Art. no. 1, Jan. 2023, doi: 10.1038/s41598-022-27132-8.
S. Arslankaya, “Comparison of performances of fuzzy logic and adaptive neuro-fuzzy inference system (ANFIS) for estimating employee labor loss,” Journal of Engineering Research, p. 100107, Jun. 2023, doi: 10.1016/j.jer.2023.100107.
S. N. Sembodo, N. Effendy, K. Dwiantoro, and N. Muddin, “Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 3, pp. 3044–3050, 2022, doi: 10.11591/ijece.v12i3.pp3044-3050.
D. E. P. Lebukan, A. N. I. Wardana, and N. Effendy, “Implementation of Plant-Wide PI-Fuzzy Controller in Tennessee Eastman Process,” in 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), Sep. 2019, pp. 450–454. doi: 10.1109/ISEMANTIC.2019.8884301.
N. Effendy, R. Imanto, and A. P. Tenggara, “Deteksi pornografi pada citra digital menggunakan pengolahan citra dan jaringan syaraf tiruan,” in National Conference on the Information Technology Research (SRITI), 2008.
S. Nafisah and N. Effendy, “Voice Biometric System: The Identification of the Severity of Cerebral Palsy using Mel-Frequencies Stochastics Approach,” International Journal of Integrated Engineering, vol. 11, no. 3, Sep. 2019, doi: 10.30880/ijie.2019.11.03.020.
N. Effendy, D. Ruhyadi, R. Pratama, D. F. Rabba, A. F. Aulia, and A. Y. Atmadja, “Forest quality assessment based on bird sound recognition using convolutional neural networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 4, Art. no. 4, Aug. 2022, doi: 10.11591/ijece.v12i4.pp4235-4242.
T. R. M. Fitrah, Y. Nurdin, and R. Roslidar, “Rancang Bangun Pengembangan Pintu Otomatis Pendeteksi Masker dan Suhu Tubuh Menggunakan Raspberry Pi 4,” KITEKTRO-Jurnal Komputer, Informasi Teknologi, dan Elektro, vol. 6, no. 2, pp. 7–14, 2021.
S.-Y. Huang, W.-J. An, D.-S. Zhang, and N.-R. Zhou, “Image classification and adversarial robustness analysis based on hybrid quantum–classical convolutional neural network,” Optics Communications, vol. 533, p. 129287, Apr. 2023, doi: 10.1016/j.optcom.2023.129287.
Y. Cao, K. Ren, and Q. Chen, “Template matching based on convolution neural network for UAV visual localization,” Optik, vol. 283, p. 170920, Jul. 2023, doi: 10.1016/j.ijleo.2023.170920.
A. N. Maulaawa, “Rancang Bangun Sistem Pintu Antisipasi Covid-19 Dengan Sanitizer Otomatis Menggunakan Sensor Ultrasonik Arduino,” JATISI, vol. 8, no. 3, pp. 1040–1048, Sep. 2021, doi: 10.35957/jatisi.v8i3.1030.
R. F. Suwandana and I. U. Hasanah, “The design of feet-based door opener to prevent the spread of coronavirus disease (Covid-19) through doorknob,” Teknika: Jurnal Sains dan Teknologi, vol. 17, no. 1, p. 48, Apr. 2021, doi: 10.36055/tjst.v17i1.9629.
H. Bhamre, S. Deshmukh, H. Shintre, P. Ghodke, and S. Shinde, “Design and development of bottle sorting machine using Arduino,” Materials Today: Proceedings, vol. 77, pp. 1023–1027, Jan. 2023, doi: 10.1016/j.matpr.2023.02.252.
S. A. Wankhede, V. S. Kale, A. D. Shaligram, A. Patil, and D. K. Halwar, “IoT based dielectric constant measurement system for solid or semi-liquid materials using Arduino WeMos D1R1,” Materials Today: Proceedings, vol. 73, pp. 474–480, Jan. 2023, doi: 10.1016/j.matpr.2022.10.022.
J. Chen, T. Jiang, D. Yu, and H. Hu, “Pattern-based circular reference detection in Python,” Science of Computer Programming, vol. 227, p. 102932, Apr. 2023, doi: 10.1016/j.scico.2023.102932.
K. Liegeois, M. Perego, and T. Hartland, “PyAlbany: A Python interface to the C++ multiphysics solver Albany,” Journal of Computational and Applied Mathematics, vol. 425, p. 115037, Jun. 2023, doi: 10.1016/j.cam.2022.115037.
T. Patel, J. Hendren, N. Lee, and A. D. Mickle, “Open source timed pressure control hardware and software for delivery of air mediated distensions in animal models,” HardwareX, vol. 11, p. e00271, Apr. 2022, doi: 10.1016/j.ohx.2022.e00271.
M. S. Mohammed et al., “Low-cost autonomous car level 2: Design and implementation for conventional vehicles,” Results in Engineering, vol. 17, p. 100969, Mar. 2023, doi: 10.1016/j.rineng.2023.100969.
W. K. Sleaman, A. A. Hameed, and A. Jamil, “Monocular vision with deep neural networks for autonomous mobile robots navigation,” Optik, vol. 272, p. 170162, Feb. 2023, doi: 10.1016/j.ijleo.2022.170162.
G. G. Morbioli, N. C. Speller, M. E. Cato, and A. M. Stockton, “An automated low-cost modular hardware and software platform for versatile programmable microfluidic device testing and development,” Sensors and Actuators B: Chemical, vol. 346, p. 130538, Nov. 2021, doi: 10.1016/j.snb.2021.130538.
S. Prihanto, “Sistem keamanan pintu otomatis berbasis gerakan tangan menggunakan algoritma squeeze and excitation residual network,” Master Thesis, Universitas Gadjah Mada, 2023.
R. Yadav and H. Raheman, “Development of an artificial neural network model with graphical user interface for predicting contact area of bias-ply tractor tyres on firm surface,” Journal of Terramechanics, vol. 107, pp. 1–11, Jun. 2023, doi: 10.1016/j.jterra.2023.01.004.
Y. El jariri et al., “New tool in python for spectroscopic data analysis: Application to variable stars data from the Oukaimden and OHP observatories,” Astronomy and Computing, vol. 43, p. 100708, Apr. 2023, doi: 10.1016/j.ascom.2023.100708.
Copyright (c) 2023 Surya Prihanto, Nazrul Effendy, Nopriadi Nopriadi
This work is licensed under a Creative Commons Attribution 4.0 International License.