POLAK-RIBIERE CONJUGATE GRADIENT ALGORITHM IN PREDICTING THE PERCENTAGE OF OPEN UNEMPLOYMENT IN NORTH SUMATRA PROVINCE
Abstract
The economic problem that has a direct impact on human life and welfare is unemployment. One of the cities in Indonesia with the highest unemployment rate is North Sumatra Province. For example, Tebing Tinggi City had the highest unemployment rate of 9.73% in 2017, while Nias Selatan had the lowest percentage of 0.31%. This research is important to do in order to anticipate the unemployment rate in North Sumatra for any party, be it the government or the private sector, so that they can work together to overcome the problem of unemployment in the future which is the main problem in the economy. For example, the government creates programs to help reduce the number of unemployed, provide preparation or do other things, helping people to become more imaginative and have skills so they can compete in the world market. Predicting unemployment has been the subject of many studies, one of which is by utilizing artificial neural networks. This study aims to predict the percentage of unemployed in North Sumatra from 2022 to 2026, using the Backpropagation Neural Network Algorithm, the Conjugate Gradient Polak-Ribiere method and Matlab version 2011 for research and data analysis. This research utilizes open action rate stimulation data for the population of North Sumatra based on residents aged over 15 years from 2017 to 2021. Using five architectural models, namely: 4-50-1, 4-55-1, 4-70- 1, 4-75-1, and 4-77-1. The final results were obtained using the most accurate architectural model, namely model 4-75-1 which has a Mean Squared Error (MSE) of 0.0000004288 and an accuracy rate of 100% with a time of 00.09 at epoch 452.
Downloads
References
W. Saputra, J. T. Hardinata, And A. Wanto, “Penerapan Metode Resilient Dalam Menentukan Model Arsitektur Terbaik Untuk Prediksi Pengangguran Terbuka Di Indonesia,” Semin. Nas. Apl. Teknol. Inf., Pp. 21–29, 2019.
M. P. Nasional, “Faktor-Faktor Yang Mempengaruhi Pengangguran Dan inflikasinya terhadap Indeks Pembangunan Di Indonesia,” Ятыатат, Vol. Вы12у, No. 235, P. 245, 2007, [Online]. Available: Http://Digilib.Unila.Ac.Id/4949/15/Bab Ii.Pdf
L. Marini And N. T. Putri, “Peluang Terjadinya Pengangguran Di Provinsi Bengkulu : Seberapa Besar?,” Converg. J. Econ. Dev., Vol. 1, No. 2, Pp. 70–83, 2020, Doi:10.33369/Convergence-Jep.V1i2.10900.
D. Setiawan, “Upaya Mengentaskan Pengangguran Terdidik Melalui Rintisan Desa Vokasi Berbasis Unggulan Daerah Di Kecamatan Ciwidey Kabupaten Bandung,” Empowerment, Vol. 2, No. 2, Pp. 56–71, 2018, [Online]. Available: Http://E-Journal.Stkipsiliwangi.Ac.Id/Index.Php/Empowerment/Article/View/598
S. Hermuningsih, “Faktor-Faktor Yang Mempengaruhi,” No. September, Pp. 78–89, 2018.
R. D. Sinaulan, “Masalah Ketenagakerjaan Di Indonesia,” Ideas J. Pendidikan, Sos. Dan Budaya, Vol. 5, No. 1, P. 55, 2019, Doi: 10.32884/Ideas.V5i1.173.
D. R. Swaramarinda, “Analisis Dampak Pengangguran Terhadap Kemiskinan Di Dki Jakarta,” J. Pendidik. Ekon. Dan Bisnis, Vol. 2, No. 2, P. 63, 2014, Doi: 10.21009/Jpeb.002.2.5.
B. Hartono And R. Hapsari, “Kajian Metode Small Area Estimation Untuk Menduga Tingkat Pengangguran Terbuka,” J. Litbang Sukowati Media Penelit. Dan Pengemb., Vol. 1, No. 2, Pp. 95–106, 2018, Doi: 10.32630/Sukowati.V1i2.27.
V. T. Zianrini And E. D. Utami, “Determinan Pengangguran Lulusan Sma Di Provinsi Sumatera Utara Tahun 2019,” Semin. Nas. Off. Stat., Vol. 2021, No. 1, Pp. 811–820, 2021, Doi: 10.34123/Semnasoffstat.V2021i1.1050.
Putri, “Produk Mie Samyang ( Studi Pada Mahasiswa Di Kota Banda Aceh ) Disusun Oleh : Putri Fakultas Ekonomi Dan Bisnis Islam Universitas Islam Negeri Ar-Raniry Banda Aceh 2021 M / 1442 H,” Skripsi, 2021.
S. Setti And A. Wanto, “Analysis Of Backpropagation Algorithm In Predicting The Most Number Of Internet Users In The World,” J. Online Inform., Vol. 3, No. 2, P. 110, 2019, Doi: 10.15575/Join.V3i2.205.
M. Andrijasa Et Al., “Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran Di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran Backpropagation,” J. Inform. Mulawarman, Vol. 5, No. 1, 2010.
S. Solikhun, M. Safii, And A. Trisno, “Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation,” J-Sakti (Jurnal Sains Komput. Dan Inform., Vol. 1, No. 1, P. 24, 2017, Doi: 10.30645/J-Sakti.V1i1.26.
J. I. Komputer, F. Matematika, D. A. N. Ilmu, And P. Alam, “Untuk Memprediksi Luas Area Serangan,” 2016.
Alimuddin, Teori Dan Aplikasi Dasar Sistem Kendali Cerdas, Vol. 55. 2020.
S. Annisa, Z. Lubis, And A. Najmita, “Perancangan Aplikasi Jaringan Syaraf Tiruan ( Neural Networks ) Untuk Pedeteksi Keaslian Uang Kertas,” J. Electr. Technol., Vol. 5, No. 1, Pp. 1–8, 2020.
M. Roynaldi, M. Simanjuntak, And ..., “Jaringan Saraf Tiruan Untuk Memprediksi Jumlah Pengangguran Di Kota Binjai Dengan Menggunakan Metode Backpropagation,” Jtik (Jurnal Tek. …, Vol. 5, No. 1, 2021, [Online]. Available: Https://Www.Jurnal.Kaputama.Ac.Id/Index.Php/Jtik/Article/View/419
W. Widyastuti And I. F. Soesianto, “Aplikasi Algoritma Conjugate Gradient Pada Jaringan Syaraf Tiruan Perambatan Balik,” Univ. Gadjah Mada …, 2004, [Online]. Available: Https://Repository.Usd.Ac.Id/3148/2/1935_Full.Pdf
J. Wang, X. Chi, And T. Gu, “Nonlinear Conjugate Gradient Methods And Their Implementations By Tao On Dawning 2000-Ii,” … Environ. 2003, Ed. Jun Zhou …, Pp. 1–4, 2003, [Online]. Available: Http://Www.Angelfire.Com/Me3/Farewell/Numerico/Paper2.Pdf
L. C. D. Susasimy And W. Sulistijanti, “Peramalan Kurs Dolar Amerika Serikat Dan Riyal Arab Saudi Terhadap Rupiah Dengan Neural Network Conjugate Gradient Polak Ribiere,” Proceeding Of The Urecol, Pp. 136–147, 2021, [Online]. Available: Http://Repository.Urecol.Org/Index.Php/Proceeding/Article/View/1679%0ahttp://Repository.Urecol.Org/Index.Php/Proceeding/Article/Download/1679/1645
A. P. Windarto, S. Solikhun, H. Handrizal, And M. Fauzan, “Jaringan Saraf Tiruan Dalam Memprediksi Sukuk Negara Ritel Berdasarkan Kelompok Profesi Dengan Backpropogation Dalam Mendorong Laju Pertumbuhan Ekonomi,” Klik - Kumpul. J. Ilmu Komput., Vol. 4, No. 2, P. 184, 2017, Doi: 10.20527/Klik.V4i2.90.
M. R. Alwanda, R. P. K. Ramadhan, And D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur Lenet-5 Untuk Pengenalan Doodle,” J. Algoritm., Vol. 1, No. 1, Pp. 45–56, 2020, Doi: 10.35957/Algoritme.V1i1.434.
A. P. Windarto, M. R. Lubis, And Solikhun, “Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba,” Kumpul. J. Ilmu Komput., Vol. 05, No. 02, Pp. 147–158, 2018.
J. Wahyuni, Y. W. Paranthy, And A. Wanto, “Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara,” Vol. 3, No. 1, 2018.
Copyright (c) 2024 Nanda Amalya, Solikhun Solikhun
This work is licensed under a Creative Commons Attribution 4.0 International License.