FACEMASK DETECTION USING YOLO V5
Abstract
The use of facemasks is one of the obligations when carrying out activities outside the home during the COVID-19 pandemic, but despite the COVID-19 pandemic, the use facemasks is still needed. One of the supporting factors driving this is air pollution. The use of facemasks can reduce the risk of respiratory diseases, because it is important to use facemasks when carrying out activities in place with a high risk of air pollution such as industrial areas, this is done to maintain the safety of its users both in term of healh and comfort. So consistency is needed for users to use masks, through current technological developments detecting the use of masks is one of the right solutions to this problem. One of the mask detection methods used in this study is YOLO (You Only Look Once). YOLO is a method that detects objects using a single neural network consisting of several layers of convolution networks for image feature extraction, then prediction of bounding box coordinates is performed simultaneously. The YOLO v5 training model in this study was carried out with a combination of minimum values on img, batch, and epoch resulting in a maximum F1 value and mAP@50 of 86%.
Downloads
References
M. Z. Alom, M. M. S. Rahman, M. S. Nasrin, T. M. Taha, and V. K. Asari, “COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches,” 2020, [Online]. Available: http://arxiv.org/abs/2004.03747.
I. S. Walia, D. Kumar, K. Sharma, J. D. Hemanth, and D. E. Popescu, “An integrated approach for monitoring social distancing and face mask detection using stacked Resnet-50 and YOLOv5,” Electron., vol. 10, no. 23, pp. 1–15, 2021, doi: 10.3390/electronics10232996.
R. Dhand and J. Li, “Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, including SARS-CoV-2,” Am. J. Respir. Crit. Care Med., vol. 202, no. 5, pp. 651–659, 2020, doi: 10.1164/rccm.202004-1263PP.
C. Ferrari, T. Vecchi, G. Sciamanna, F. Blandini, A. Pisani, and S. Natoli, “Facemasks and face recognition: Potential impact on synaptic plasticity,” Neurobiol. Dis., vol. 153, no. February, p. 105319, 2021, doi: 10.1016/j.nbd.2021.105319.
M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection,” Sustain. Cities Soc., vol. 65, p. 102600, 2021, doi: 10.1016/j.scs.2020.102600.
T. Guan et al., “The effects of facemasks on airway inflammation and endothelial dysfunction in healthy young adults: A double-blind, randomized, controlled crossover study,” Part. Fibre Toxicol., vol. 15, no. 1, pp. 1–12, 2018, doi: 10.1186/s12989-018-0266-0.
H. Shen et al., “Individual and population level protection from particulate matter exposure by wearing facemasks,” Environ. Int., vol. 146, no. June 2020, p. 106026, 2021, doi: 10.1016/j.envint.2020.106026.
M. Risqi, “Tingkat Pengetahuan Terhadap Polusi Udaran Dan Kepatuhan Penggunaan Masker Pekerja Ojek Online Selama Pandemi Covid-19 Pekerja Ojek Online Selama,” p. 110, 2022, [Online]. Available: http://repository.stikesdrsoebandi.ac.id/385/1/17010110 Muhammad Risqi.pdf.
N. R. Smart, C. J. Horwell, T. S. Smart, and K. S. Galea, “Assessment of the wearability of facemasks against air pollution in primary school-aged children in London,” Int. J. Environ. Res. Public Health, vol. 17, no. 11, pp. 1–13, 2020, doi: 10.3390/ijerph17113935.
J. Zhang and Q. Mu, “Air pollution and defensive expenditures: Evidence from particulate-filtering facemasks,” J. Environ. Econ. Manage., vol. 92, pp. 517–536, 2018, doi: 10.1016/j.jeem.2017.07.006.
S. Sarwono, P. Yudyastanti, and M. Marsito, “Hubungan Penggunaan Apd Masker Terhadap Risiko Gangguan Pernafasan Ispa Pada Pekerja Industri Pengolahan Kayu Di Wadaslintang,” J. Ilm. Kesehat. Keperawatan, vol. 17, no. 2, p. 141, 2021, doi: 10.26753/jikk.v17i2.659.
J. Lelieveld, A. Pozzer, U. Pöschl, M. Fnais, A. Haines, and T. Münzel, “Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective,” Cardiovasc. Res., vol. 116, no. 11, pp. 1910–1917, 2020, doi: 10.1093/cvr/cvaa025.
J. Du, “Understanding of Object Detection Based on CNN Family and YOLO,” J. Phys. Conf. Ser., vol. 1004, no. 1, 2018, doi: 10.1088/1742-6596/1004/1/012029.
Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, and R. Wang, “DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection,” Inf. Sci. (Ny)., vol. 522, pp. 241–258, 2020, doi: 10.1016/j.ins.2020.02.067.
T. Gelar et al., “EDSENCE: Jurnal Pendidikan Multimedia Pendeteksian Penggunaan Masker Berbasis Android dan YOLOv5 untuk Media Video Realtime pada Ruang Perkantoran,” vol. 4, no. 2, pp. 63–74, 2022.
H. V. Nguyen, J. H. Bae, Y. E. Lee, H. S. Lee, and K. R. Kwon, “Comparison of Pre-Trained YOLO Models on Steel Surface Defects Detector Based on Transfer Learning with GPU-Based Embedded Devices,” Sensors, vol. 22, no. 24, 2022, doi: 10.3390/s22249926.
T. Abirami, P. Priakanth, and T. Madhuvanthi, “Effective face mask and social distance detection with alert system for covid-19 using YOLOv5 model,” Adv. Parallel Comput., no. 41, pp. 80–85, 2022, doi: 10.3233/APC220011.
M. E. Eren, N. Solovyev, E. Raff, C. Nicholas, and B. Johnson, “COVID-19 Kaggle Literature Organization,” Proc. ACM Symp. Doc. Eng. DocEng 2020, 2020, doi: 10.1145/3395027.3419591.
A. Gholamy, V. Kreinovich, and O. Kosheleva, “Why 70/30 or 80/20 Relation Between Training and Testing Sets : A Pedagogical Explanation,” Dep. Tech. Reports, pp. 1–6, 2018.
J. Tao, H. Wang, X. Zhang, X. Li, and H. Yang, “An object detection system based on YOLO in Traffic Scene,” 2018 IEEE 4th Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2018, pp. 315–319, 2018, doi: 10.1109/ICCSNT.2017.8343709.
C. Liu, Y. Tao, J. Liang, K. Li, and Y. Chen, “Object detection based on YOLO network,” Proc. 2018 IEEE 4th Inf. Technol. Mechatronics Eng. Conf. ITOEC 2018, no. Itoec, pp. 799–803, 2018, doi: 10.1109/ITOEC.2018.8740604.
D. Thuan, “Evolution of Yolo Algorithm and Yolov5: the State-of-the-Art Object Detection Algorithm,” p. 61, 2021, [Online]. Available: https://www.theseus.fi/bitstream/handle/10024/452552/Do_Thuan.pdf?sequence=2.
J. Ieamsaard, S. N. Charoensook, and S. Yammen, “Deep Learning-based Face Mask Detection Using YoloV5,” Proceeding 2021 9th Int. Electr. Eng. Congr. iEECON 2021, pp. 428–431, 2021, doi: 10.1109/iEECON51072.2021.9440346.
K. Wilianto, “Evaluation Metrics pada Computer Vision dari Klasifikasi hingga Deteksi Objek,” medium, 2021. https://medium.com/data-folks-indonesia/evaluation-metrics-pada-computer-vision-dari-klasifikasi-hingga-deteksi-objek-5049d3fd90d2.
S. Degadwala, D. Vyas, U. Chakraborty, A. R. Dider, and H. Biswas, “Yolo-v4 Deep Learning Model for Medical Face Mask Detection,” Proc. - Int. Conf. Artif. Intell. Smart Syst. ICAIS 2021, pp. 209–213, 2021, doi: 10.1109/ICAIS50930.2021.9395857.
A. Kumar, A. Kalia, K. Verma, A. Sharma, and M. Kaushal, “Scaling up face masks detection with YOLO on a novel dataset,” Optik (Stuttg)., vol. 239, no. March, p. 166744, 2021, doi: 10.1016/j.ijleo.2021.166744.
K. Raj, “ML Classification-Why accuracy is not a best measure for assessing??,” medium, 2020. https://medium.com/@KrishnaRaj_Parthasarathy/ml-classification-why-accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c (accessed Nov. 03, 2023).
Copyright (c) 2023 Lailatul Suroiyah, Yunianita Rahmawati, Rohman Dijaya
This work is licensed under a Creative Commons Attribution 4.0 International License.