A Hybrid Deep Learning Architecture for Cost-Effective, Real-Time IV Infusion Anomaly Detection using IoT Sensors
DOI:
https://doi.org/10.52436/1.jutif.2025.6.6.5440Keywords:
Anomaly Detection, Deep Learning, Ensemble Learning, Internet of Things, Infusion Monitoring, Real-Time SystemsAbstract
Intravenous (IV) infusion therapy is a critical medical procedure, yet manual monitoring increases the risk of complications such as air embolism and irregular infusion flow, particularly in resource-constrained environments. Although several automated infusion monitoring systems have been proposed, their high implementation cost limits practical adoption. This research develops a low-cost IoT-based infusion monitoring system capable of real-time anomaly detection using a multi-architecture machine learning approach. The proposed prototype integrates an ESP32 microcontroller with load cell (HX711) and optical (LM393) sensors to acquire time-series infusion data. Ten models from classical machine learning, deep learning, hybrid, and ensemble categories were evaluated using a dataset of 10,420 records under a unified experimental setup. The results show that XGBoost had a perfect recall (1.0000) and a strong PRAUC, while the LSTM Autoencoder had the highest F1-Score (0.9343) and precision (0.8934). The best overall performance came from hybrid and ensemble methods, with CNN–LSTM having an F1-Score of 0.89, a recall of 0.99, and a precision of 0.80. This means they would be great for clinics where being sensitive is very important. The research shows that using a low-cost IoT infrastructure with carefully chosen deep learning or ensemble models can help find problems in real time. A web dashboard explains how the technology operates and its capabilities. This study examines a cost-effective and easily scalable method to enhance infusion safety in hospitals with limited financial resources.
Downloads
References
S. K. Kuitunen, I. Niittynen, M. Airaksinen, and A.-R. Holmström, “Systemic Defenses to Prevent Intravenous Medication Errors in Hospitals: A Systematic Review,” J Patient Saf, vol. 17, no. 8, pp. e1669–e1680, Dec. 2021, doi: 10.1097/PTS.0000000000000688.
S. Rajakumar, R. Rajah, S. Thanimalai, F. B. M. Mokhtar, and D. S. Ramachandram, “Intravenous Medication Administration Errors in Hospitalised Patients: An Updated Systematic Review,” Evaluation Clinical Practice, vol. 31, no. 4, p. e70167, June 2025, doi: 10.1111/jep.70167.
R. Maniktalia, S. Tanwar, R. Billa, and D. K, “IoT Based Drip Infusion Monitoring System,” in 2022 IEEE Delhi Section Conference (DELCON), Feb. 2022, pp. 1–6. doi: 10.1109/DELCON54057.2022.9753052.
S. Kuitunen, I. Niittynen, M. Airaksinen, and A.-R. Holmström, “Systemic Causes of In-Hospital Intravenous Medication Errors: A Systematic Review,” J Patient Saf, vol. 17, no. 8, pp. e1660–e1668, Dec. 2021, doi: 10.1097/PTS.0000000000000632.
W. Ahmed et al., “Addressing Critical Mistakes in Administering Intravenous Medications at Omdurman Military Hospital, Khartoum, Sudan,” IJGM, vol. Volume 18, pp. 123–133, Jan. 2025, doi: 10.2147/IJGM.S497591.
A. Sutherland, M. Canobbio, J. Clarke, M. Randall, T. Skelland, and E. Weston, “Incidence and prevalence of intravenous medication errors in the UK: a systematic review,” Eur J Hosp Pharm, vol. 27, no. 1, pp. 3–8, Jan. 2020, doi: 10.1136/ejhpharm-2018-001624.
World Health Organization (WHO), “Patient Safety — Factsheet,” 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/patient-safety
J. G. Jessurun, N. G. M. Hunfeld, J. Van Rosmalen, M. Van Dijk, and P. M. L. A. Van Den Bemt, “Prevalence and determinants of intravenous admixture preparation errors: A prospective observational study in a university hospital,” Int J Clin Pharm, vol. 44, no. 1, pp. 44–52, Feb. 2022, doi: 10.1007/s11096-021-01310-6.
K. Kwiecień-Jaguś, W. Mędrzycka-Dąbrowska, and M. Kopeć, “Understanding Medication Errors in Intensive Care Settings and Operating Rooms—A Systematic Review,” Medicina, vol. 61, no. 3, p. 369, Feb. 2025, doi: 10.3390/medicina61030369.
M. R. K K, M. N. M, R. Zidan, I. Alsarraj, and B. Hasan, “IOT-Based Wireless Patient Monitor Using ESP32 Microcontroller,” in 2023 24th International Arab Conference on Information Technology (ACIT), Dec. 2023, pp. 1–6. doi: 10.1109/ACIT58888.2023.10453847.
P. Gupta, A. Rao, P. Chimurkar, and P. Kasambe, “An Automated IoT-Enabled Real-Time Intravenous Infusion cum Remote Patient Monitoring System,” in 2025 International Conference on Emerging Smart Computing and Informatics (ESCI), Mar. 2025, pp. 1–6. doi: 10.1109/ESCI63694.2025.10988336.
C. L. Kok, T. H. Teo, Y. Y. Koh, Y. Dai, B. K. Ang, and J. P. Chai, “Development and Evaluation of an IoT-Driven Auto-Infusion System with Advanced Monitoring and Alarm Functionalities,” in 2024 IEEE International Symposium on Circuits and Systems (ISCAS), May 2024, pp. 1–5. doi: 10.1109/ISCAS58744.2024.10558602.
S. Meenatchi Sundaram, J. R. Naik, M. Natarajan, and A. Acharya K, “Design and development of an IoT-based trolley for weighing the patient in lying condition,” Front. Digit. Health, vol. 6, p. 1339184, Sept. 2024, doi: 10.3389/fdgth.2024.1339184.
C. G. Babu, J. R. D. Kumar, V. R. Balaji, K. Priyadharsini, and S. P. Karthi, “Performance Analysis of Smart Intravenous Infusion Systems using Machine Learning,” in 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India: IEEE, Oct. 2021, pp. 1–7. doi: 10.1109/STCR51658.2021.9588997.
G. M. Nagamani and C. K. Kumar, “Design of an improved graph-based model for real-time anomaly detection in healthcare using hybrid CNN-LSTM and federated learning,” Heliyon, vol. 10, no. 24, p. e41071, Dec. 2024, doi: 10.1016/j.heliyon.2024.e41071.
M. A. Morid, O. R. L. Sheng, and J. Dunbar, “Time Series Prediction Using Deep Learning Methods in Healthcare,” ACM Trans. Manage. Inf. Syst., vol. 14, no. 1, pp. 1–29, Mar. 2023, doi: 10.1145/3531326.
Z. Z. Darban, G. I. Webb, S. Pan, C. C. Aggarwal, and M. Salehi, “Deep Learning for Time Series Anomaly Detection: A Survey,” ACM Comput. Surv., vol. 57, no. 1, pp. 1–42, Jan. 2025, doi: 10.1145/3691338.
M. Obuseh, D. Yu, and P. DeLaurentis, “Detecting Unusual Intravenous Infusion Alerting Patterns with Machine Learning Algorithms,” 2022.
L. Meneghetti, E. Dassau, F. J. Doyle, and S. Del Favero, “Machine Learning-Based Anomaly Detection Algorithms to Alert Patients Using Sensor Augmented Pump of Infusion Site Failures,” J Diabetes Sci Technol, vol. 16, no. 3, pp. 641–648, May 2022, doi: 10.1177/1932296821997854.
L. Kirichenko, Y. Koval, S. Yakovlev, and D. Chumachenko, “Anomaly Detection in Fractal Time Series with LSTM Autoencoders,” Mathematics, vol. 12, no. 19, p. 3079, Oct. 2024, doi: 10.3390/math12193079.
M. Hizem, L. Bousbia, Y. Ben Dhiab, M. O.-E. Aoueileyine, and R. Bouallegue, “Reliable ECG Anomaly Detection on Edge Devices for Internet of Medical Things Applications,” Sensors, vol. 25, no. 8, p. 2496, Apr. 2025, doi: 10.3390/s25082496.
S. Rani et al., “Machine Learning-Powered Smart Healthcare Systems in the Era of Big Data: Applications, Diagnostic Insights, Challenges, and Ethical Implications,” Diagnostics, vol. 15, no. 15, p. 1914, July 2025, doi: 10.3390/diagnostics15151914.
S. Ustebay, A. Sarmis, G. K. Kaya, and M. Sujan, “A comparison of machine learning algorithms in predicting COVID-19 prognostics,” Intern Emerg Med, vol. 18, no. 1, pp. 229–239, Jan. 2023, doi: 10.1007/s11739-022-03101-x.
H. Luo et al., “SHAP based predictive modeling for 1 year all-cause readmission risk in elderly heart failure patients: feature selection and model interpretation,” Sci Rep, vol. 14, no. 1, p. 17728, July 2024, doi: 10.1038/s41598-024-67844-7.
A. Naik, G. G. Tejani, and S. J. Mousavirad, “SGO enhanced random forest and extreme gradient boosting framework for heart disease prediction,” Sci Rep, vol. 15, no. 1, p. 18145, May 2025, doi: 10.1038/s41598-025-02525-7.
R. Samuel and T. Pandi, “Optimizing brain stroke detection with a weighted voting ensemble machine learning model,” Sci Rep, vol. 15, no. 1, p. 31215, Aug. 2025, doi: 10.1038/s41598-025-14358-5.
P. Mahajan, S. Uddin, F. Hajati, and M. A. Moni, “Ensemble Learning for Disease Prediction: A Review,” Healthcare, vol. 11, no. 12, p. 1808, June 2023, doi: 10.3390/healthcare11121808.
S. M. Ganie, P. K. D. Pramanik, and Z. Zhao, “Ensemble learning with explainable AI for improved heart disease prediction based on multiple datasets,” Sci Rep, vol. 15, no. 1, p. 13912, Apr. 2025, doi: 10.1038/s41598-025-97547-6.
C. Paramita, C. Supriyanto, P. Šolić, C. Wada, and A. A. Dzaky, “Performance Evaluation of YOLOv8 Models for Multi-Class Skin Lesion Detection from Dermoscopic Images,” in 2025 International Conference on Smart Computing, IoT and Machine Learning (SIML), Surakarta, Indonesia: IEEE, June 2025, pp. 1–6. doi: 10.1109/SIML65326.2025.11080819.
B. A. Mahendra, C. Supriyanto, C. Paramita, N. Z. B. M. Safar, and I. N. Dewi, “Development of a Smartphone-Based Cataract Detection System Using YOLOv10x and Ionic Framework with a UI/UX Centric Approach,” in 2025 International Conference on Smart Computing, IoT and Machine Learning (SIML), Surakarta, Indonesia: IEEE, June 2025, pp. 1–5. doi: 10.1109/SIML65326.2025.11081150.
E. R. Subhiyakto et al., “Evaluation of Resampling Techniques in CNN-Based Heartbeat Classification,” ISI, vol. 29, no. 4, pp. 1323–1332, Aug. 2024, doi: 10.18280/isi.290408.
K. Anggriani, S. Az Zahra, and A. Susanto, “Enhancing Malware Detection in IoT Networks using Ensemble Learning on IoT-23 Dataset,” J. Tek. Inform. (JUTIF), vol. 6, no. 4, pp. 1985–2000, Aug. 2025, doi: 10.52436/1.jutif.2025.6.4.4782.
P. S. Chirumamilla, G. Sunitha, A. Sneha, V. Thirupathi, C. R. Naidu, and A. L. Rao, “A Hybrid Approach for IoT Sensor Anomaly Detection with LSTM and Autoencoder-Based Preprocessing,” in 2025 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE), Apr. 2025, pp. 1–6. doi: 10.1109/AMATHE65477.2025.11081356.
A. Iqbal, R. Amin, F. S. Alsubaei, and A. Alzahrani, “Anomaly detection in multivariate time series data using deep ensemble models,” PLoS ONE, vol. 19, no. 6, p. e0303890, June 2024, doi: 10.1371/journal.pone.0303890.
A. G. Ayad, N. A. Sakr, and N. A. Hikal, “A hybrid approach for efficient feature selection in anomaly intrusion detection for IoT networks,” J Supercomput, vol. 80, no. 19, pp. 26942–26984, Dec. 2024, doi: 10.1007/s11227-024-06409-x.
Doreswamy, M. K. Hooshmand, and I. Gad, “Feature selection approach using ensemble learning for network anomaly detection,” CAAI Trans on Intel Tech, vol. 5, no. 4, pp. 283–293, Dec. 2020, doi: 10.1049/trit.2020.0073.
Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M. Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly Detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020, doi: 10.1109/ACCESS.2020.3009843.
Y. Yin et al., “IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset,” J Big Data, vol. 10, no. 1, p. 15, Feb. 2023, doi: 10.1186/s40537-023-00694-8.
N. Anil Kumar, S. Kuchi, S. V. Krishna, P. L. Narasimha, K. S. Sree, and B. Ashreetha, “Voice-Based Detection of Parkinson’s Disease: A Multi-Machine Learning Model Approach,” in 2025 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Apr. 2025, pp. 1–9. doi: 10.1109/ICKECS65700.2025.11034824.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Brian Nafis, Cinantya Paramita, Sasha-Gay Wright

This work is licensed under a Creative Commons Attribution 4.0 International License.





