Interpretable Hybrid YOLOv8s-GWO Framework for Bounding-Box Viral Pneumonia Detection on Kaggle Chest X-ray Images

Authors

  • Cinantya Paramita Dinus Research Group for AI in Medical Science (DREAMS), Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia
  • Azmi Jalaluddin Amron Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia
  • Petar Šolić Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
  • Supratiknyo SMK Sunan Kalijaga Demak, Demak, Indonesia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.6.5419

Keywords:

Grey Wolf Optimizer, Hyperparameter Optimization, Medical Image Detection, Viral Pneumonia, YOLOv8s, Chest X-ray

Abstract

Viral pneumonia continues to impose a substantial global health burden, making rapid and reliable radiographic detection essential for early clinical management. This study proposes a hybrid framework integrating the YOLOv8s detection model with the Grey Wolf Optimizer (GWO) to enhance hyperparameter tuning for Viral Pneumonia identification in chest X-ray images. A curated set of Normal and Viral Pneumonia samples was manually annotated and preprocessed before training. The optimization process involved multi-stage refinement of learning rate, momentum, weight decay, and loss-gain parameters to improve convergence stability and detection accuracy. The optimized YOLOv8s + GWO model demonstrated notable performance gains, achieving 0.965 recall, 0.983 mAP@50, and 0.827 mAP@50–95 on internal evaluations. External testing further validated its robustness, delivering 98.80% accuracy, 99.48% specificity, and 97.46% sensitivity. These results highlight not only enhanced clinical diagnostic reliability but also contributions to Informatics and Computer Science, demonstrating the effectiveness of metaheuristic-guided optimization in improving deep-learning model performance, generalization, and computational efficiency for AI-driven image detection tasks.

Downloads

Download data is not yet available.

References

World Health Organization, “Pneumonia: Key Facts,” Nov. 11 2022. https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed Dec. 2025).

Y. Matsumura, et al., “Epidemiology of respiratory viruses according to age group in Kyoto city, Japan, 2023–24”, Sci. Rep., vol. 15, Art. 85068, 2025. doi: 10.1038/s41598-024-85068-7.

N. Karabulut, et al., “The epidemiological features and pathogen spectrum of respiratory tract infections using a multiplex RT-PCR panel: February 2021-July 2023,” Diagnostics, vol. 14, no. 11, p. 1071, 2024. doi: 10.3390/diagnostics14111071.

Radiopaedia Foundation, “Viral respiratory tract infection,” Radiopaedia.org - Last revised by Y. Weerakkody on 22 Apr 2022. https://radiopaedia.org/articles/viral-pneumonia (accessed Dec. 2025).

Ş. M. Şimşek, et al., “Seasonal distribution of viral pneumonia after COVID-19 pandemic,” Trop. Med. Infect. Dis., vol. 10, no. 9, Art. 268, 2025. doi: 10.3390/tropicalmed10090268

A. S. Hyperastuty, D. A. Pradana, A. Widayani, F. D. Putra, and Y. Mukhammad, “Pneumonia detection on X-rays image using YOLOv8 model,” J. Appl. Intell. Syst., vol. 9, no. 2, pp. 200-206, 2024, doi: 10.62411/jais.v9i2.10865.

T. Rahman, M. E. H. Chowdhury, A. Khandakar, K. R. Islam, M. A. Kadir, and Z. B. Mahbub, “Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray,” Appl. Sci., vol. 10, no. 9, p. 3233, 2020, doi: 10.3390/app10093233.

P. Mooney, “Chest X-Ray Pneumonia Dataset,” 2018. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed Dec. 2025).

A. Kolas, “3 Kinds of Pneumonia Dataset,” 2022. https://www.kaggle.com/datasets/kolasa/3-kinds-of-pneumonia-dataset (accessed Dec. 2025).

A. Widayani, Y. Nugroho, and D. A. Pradana, “Review of application YOLOv8 in medical imaging,” Indones. Appl. Phys. Lett., vol. 5, no. 1, pp. 23-33, 2024, doi: 10.20473/iapl.v5i1.57001.

D. F. Hermens, “Automatic object detection for behavioural research using YOLOv8,” Behav. Res. Methods, vol. 56, no. 7, pp. 7307–7330, 2024, doi: 10.3758/s13428-024-02420-5.

Y. Huang, Z. Liu, and X. Wang, “YOLOv8 framework for COVID-19 and pneumonia detection,” J. Med. Imaging Artif. Intell., vol. 5, no. 2, pp. 112-124, 2024, doi: 10.1177/20552076251341092.

J. Lin, L. Dong, and Y. Xu, “An improved grey wolf optimization with multi-strategy ensemble,” Sensors, vol. 22, no. 18, p. 6843, 2022, doi: 10.3390/s22186843.

M. Yu, J. Xu, W. Liang, Y. Qiu, S. Bao, and L. Tang, “Improved multi-strategy adaptive grey wolf optimization for practical engineering applications,” Artif. Intell. Rev., vol. 57, pp. 1-25, 2024, doi: 10.1007/s10462-023-10653-3.

H. Ryu, S. Kim, and J. Park, “YOLOv8 with post-processing for small object detection,” Sensors, vol. 24, no. 3, p. 1121, 2024, doi: 10.3390/s24031121.

M. Parveen Rahamathulla, “YOLOv8’s advancements in tuberculosis identification from chest radiographs,” Frontiers in Big Data, vol. 4, Art. 1401981, 2024. doi: 10.3389/fdata.2024.1401981.

A. Q. Khan, G. Sun, M. Khalid, A. Imran, A. Bilal, M. Azam, et al., “A novel fusion of genetic grey wolf optimization and kernel extreme learning machines for precise diabetic eye disease classification,” PLOS ONE, vol. 19, no. 5, e0303094, 2024. doi: 10.1371/journal.pone.0303094.

Y. Xie, B. Zhu, Y. Jiang, B. Zhao, H. Yu, “Diagnosis of pneumonia from chest X-ray images using YOLO deep learning,” Frontiers in Neurorobotics, 2025. https://www.frontiersin.org/journals/fnbot/ (accessed Dec. 2025).

A. Elhanashi, “AI-Powered Object Detection in Radiology: Current Models and Future Directions,” Diagnostics (MDPI), vol. 11, no. 5, Art. 141, 2025. doi: 10.3390/diagnostics1105141.

M. A. A. Albadr, “Gray Wolf Optimization–Extreme Learning Machine (GWO-ELM) technique for diabetic retinopathy detection,” Frontiers in Public Health, vol. 10, 2022. doi: 10.3389/fpubh.2022.925901.

D. Li, “Attention-enhanced architecture for improved pneumonia detection in chest X-ray images,” BMC Med. Imaging, vol. 24, Art. 6, 2024, doi:10.1186/s12880-023-01177-1.

R. Siddiqi and S. Javaid, “Deep learning for pneumonia detection in chest X-ray images: A comprehensive survey,” J. Imaging, vol. 10, no. 8, p. 176, 2024, doi: 10.3390/jimaging10080176.

L. Wu, J. Zhang, Y. Wang, R. Ding, Y. Cao, G. Liu, C. Liufu, B. Xie, S. Kang, R. Liu, W. Li, and F. Guan, “Pneumonia detection based on RSNA dataset and anchor-free deep learning detector,” Sci. Rep., vol. 14, Art. 1929, Jan. 2024, doi: 10.1038/s41598-024-52156-7.

E. Yanar, F. Hardalaç, and K. Ayturan, “PELM: A deep learning model for early detection of pneumonia in chest radiography,” Appl. Sci., vol. 15, no. 12, p. 6487, 2025, doi: 10.3390/app15126487.

A. Ait Nasser and M. A. Akhloufi, “A review of recent advances in deep learning models for chest disease detection using radiography,” Diagnostics, vol. 13, no. 1, p. 159, 2023, doi: 10.3390/diagnostics13010159.

S. Singh, M. Kumar, A. Kumar, B. K. Verma, K. Abhishek, and S. Selvarajan, “Efficient pneumonia detection using Vision Transformers on chest X-rays,” Sci. Rep., vol. 14, p. 2487, 2024, doi: 10.1038/s41598-024-52703-2.

Z. Cai, K. Zhou, and Z. Liao, “A systematic review of YOLO-based object detection in medical imaging: Advances, challenges, and future directions,” Comput. Mater. Contin., vol. 85, no. 2, pp. 2255-2303, 2025, doi: 10.32604/cmc.2025.067994.

A. B. Rashid, J. Asma, K. Barua, and D. Das, “An enhanced deep learning framework for pneumonia detection in chest X-rays integrating CBAM with DenseNet-121,” SN Comput. Sci., vol. 6, no. 5, p. 472, May 2025, doi: 10.1007/s42979-025-04017-x.

A. A. H. Haresta, C. Paramita, and W. D. Tjahtjono, “Development of ViScan: A mobile application for skin cancer detection using Ionic framework and YOLOv10x,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 863-867, Jun. 2025, doi: 10.30871/jaic.v9i3.9426.

W. T. D. Tjahjono, C. Paramita, C. Supriyanto, A. J. Savicevic, S. Rakasiwi, and A. A. Haresta,

“YOLOv10x model for accurate first detection of skin diseases from dermoscopic objects,”

in Proc. 2025 Int. Conf. Smart Comput., IoT and Mach. Learn. (SIML),

Surakarta, Indonesia, 2025, pp. 1-6, doi: 10.1109/SIML65326.2025.11080864.

C. Paramita, C. Supriyanto, P. Šolić, C. Wada, and A. A. Dzaky, “Performance evaluation of YOLOv8 models for multi-class skin lesion detection from dermoscopic images,” in Proc. 2025 Int. Conf. Smart Comput., IoT and Mach. Learn. (SIML), Surakarta, Indonesia, 2025, pp. 1-6, doi: 10.1109/SIML65326.2025.11080819.

C. Paramita, C. Supriyanto, Amalia, and K. R. Putra, “Comparative analysis of YOLOv5 and YOLOv8 cigarette detection in social media content,” Semarang Journal of Information Technology (SJI), vol. 11, no. 2, pp. 341-352, May 2024, doi: 10.15294/sji.v11i2.2808.

M. A. Widyananda, C. Paramita, C. Supriyanto, A. W. Wibowo, D. W. Utomo, and S. T. Widyaatmadja, “YOLOvX method for cataract early detection,” in Proc. 2025 Int. Conf. Smart Comput., IoT and Mach. Learn. (SIML), Surakarta, Indonesia, 2025, pp. 1-5, doi: 10.1109/SIML65326.2025.11080840.

B. A. Mahendra, C. Supriyanto, C. Paramita, N. Z. B. M. Safar, and I. N. Dewi, “Development of a smartphone-based cataract detection system using YOLOv10x and Ionic framework with a UI/UX centric approach,” in Proc. 2025 Int. Conf. Smart Comput., IoT and Mach. Learn. (SIML), Surakarta, Indonesia, 2025, pp. 1-5, doi: 10.1109/SIML65326.2025.11081150.

P. . Setiaji, W. A. Triyanto, and M. Nurhaliza, “Real-Time Traffic Density and Anomaly Monitoring Using YOLOv8, OpenCV and Pattern Recognition for Smart City Applications in Demak,” J. Tek. Inform. (JUTIF), vol. 6, no. 4, pp. 1769-1782, Aug. 2025. doi: 10.52436/1.jutif.2025.6.4.4867.

B. Nusman, A. Y. Rahman, and R. P. Putera, “LOBSTER AGE DETECTION USING DIGITAL VIDEO-BASED YOLO V8 ALGORITHM,” J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1155-1163, Jul. 2024. doi: 10.52436/1.jutif.2024.5.4.2144.

Ahmad Fajruddin Syauqi and D. D. Prasetya, “DEVELOPMENT OF HERBIFY APPLICATION WITH AI INTEGRATED UTILIZING YOLO V8 FOR OPTIMIZING HERBAL POTENTIAL IN INDONESIA,” J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 113-124, Jul. 2024. doi: 10.52436/1.jutif.2024.5.4.2094.

Z. S. Hidayat, Y. A. . Wijaya, and R. Kurniawan, “OPTIMIZING YOLOV8 FOR AUTONOMOUS DRIVING: BATCH SIZE FOR BEST MEAN AVERAGE PRECISION (MAP),” J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1147-1153, Jul. 2024. doi: 10.52436/1.jutif.2024.5.4.1626.

N. Okila et al., “Deep learning for accurate B-line detection and localization in lung ultrasound imaging,” Frontiers in Artificial Intelligence, 2025, doi: 10.3389/frai.2025.1560523.

F. Conversano et al., “Automatic approach for B-lines detection in lung ultrasound images using You Only Look Once algorithm,” Journal of Ultrasound, 2025, doi: 10.1007/s40477-025-01077-w.

X. Wang et al., “Enhanced pulmonary nodule detection with U-Net, YOLOv8, and Swin Transformer,” BMC Medical Imaging, vol. 25, p. 247, 2025, doi: 10.1186/s12880-025-01784-0.

W. Zhu, X. Wang, J. Xing, X. S. Xu, and M. Yuan, “YOLOv8-BCD: a real-time deep learning framework for pulmonary nodule detection in computed tomography imaging,” Quantitative Imaging in Medicine and Surgery, vol. 15, no. 9, pp. 8189-8204, 2025, doi: 10.21037/qims-2025-824.

K. Khotimah, S. Surono, and A. Thobirin, “Optimizing EfficientNet for imbalanced medical image classification using grey wolf optimization,” Computer Science and Information Technologies, vol. 6, no. 2, pp. 112–121, 2025, doi: 10.11591/csit.v6i2.pp112-121.

H. Yang et al., “Utilizing convolutional neural network and gray wolf optimization for image super-resolution,” Journal of King Saud University - Science, 2025, doi: 10.25259/JKSUS_162_2024.

J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977, doi: 10.2307/2529310.

R. Kailasam and S. Balasubramanian, “Deep Learning for Pneumonia Detection: A Combined CNN and YOLO Approach,” Hum.-Cent. Intell. Syst., vol. 5, pp. 44-62, 2025, doi: 10.1007/s44230-025-00091-9.

M. R. Hasan, S. M. A. Ullah, and S. M. R. Islam, “Recent advancement of deep learning techniques for pneumonia prediction from chest X-ray image,” Med. Rep., vol. 7, p. 100106, Oct. 2024, doi: 10.1016/j.hmedic.2024.100106.

M. M. Kabir, M. F. Mridha, A. Rahman, M. A. Hamid, and M. M. Monowar, “Detection of COVID-19, pneumonia, and tuberculosis from radiographs using AI-driven knowledge distillation,” Heliyon, vol. 10, no. 5, p. e26801, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26801.

J. M. Kimeu, M. Kisangiri, H. Mbelwa, and J. Leo, “Deep learning-based mobile application for the enhancement of pneumonia medical imaging analysis: A case-study of West-Meru Hospital,” Informatics Med. Unlocked, vol. 50, p. 101582, 2024, doi: 10.1016/j.imu.2024.101582.

Additional Files

Published

2025-12-23

How to Cite

[1]
C. . Paramita, A. Jalaluddin Amron, P. . Šolić, and S. Supratiknyo, “Interpretable Hybrid YOLOv8s-GWO Framework for Bounding-Box Viral Pneumonia Detection on Kaggle Chest X-ray Images”, J. Tek. Inform. (JUTIF), vol. 6, no. 6, pp. 5699–5790, Dec. 2025.