Artificial Intelligence in Green and Sustainable Investment: a Bibliometric and Systematic Literature Review
DOI:
https://doi.org/10.52436/1.jutif.2026.7.1.5287Keywords:
Artificial Intelegence, Bibliometric Analysis, Green Investment, Sustainable Investment, Systematic Literature ReviewAbstract
Green and sustainable investment has gained increasing global attention due to the urgency of the climate crisis, social demands, and the adoption of Environmental, Social, and Governance (ESG) principles. However, research on the application of artificial intelligence (AI) in this domain remains fragmented and lacks a comprehensive mapping. This study aims to map the trends, research directions, and key findings related to AI in green and sustainable investment using a bibliometric and systematic literature review (SLR) approach. Data were retrieved from the Scopus database and screened with the PRISMA framework, resulting in 24 articles analyzed through VOSviewer and thematic synthesis. The results indicate significant developments in energy efficiency, green buildings, machine learning, and sustainability, alongside an expanding pattern of international collaboration. Nonetheless, limitations remain, including insufficient cross-sectoral integration, limited empirical studies in developing countries, and the lack of AI models that holistically incorporate risk, ESG, and SDGs indicators. The main contribution of this study lies in providing a structured literature mapping that can serve as a foundation for developing more integrative AI frameworks and expanding research contexts to optimize sustainable green investment. These findings are expected to be valuable for researchers and practitioners in advancing innovation and strengthening the AI-driven sustainable finance ecosystem.
Downloads
References
U. Silaen, W. Srihandoko, and S. Listari, Sustainable Banking Management, no. 1. Bogor: Kesatuan Press, 2025.
R. H. Valdiansyah and D. Widiyati, “Peranan Sustainable Finance Pada Industri Umkm Indonesia : Peluang Dan Tantangan,” vol. 4, no. 1, pp. 47–55, 2024.
N. Jamil, A. Novel, I. Adhicandra, C. Suardi, and A. Nasir, Logistics 5.0 Maturity Model: a Human-Centric and Sustainable Approach for the Supply Chain of the Future. Jambi: PT. Sonpedia Publishing Indonesia, 2023.
S. Yanto and P. I. Sari, Dinamika Price Limit dalam Ekosistem Investasi Pasar Modal. Bandar Lampung: HADLA Media Informasi, 2025.
A. Wibowo, “Integrating Artificial Intelligence In Sustainability Reporting : A Future-Oriented Approach To Green Accounting Mengintegrasikan Kecerdasan Buatan Dalam Pelaporan Keberlanjutan : Pendekatan Berorientasi Masa Depan Untuk Akuntansi Hijau,” pp. 223–241, 2024.
H. Xie and F. Wu, “Artificial Intelligence Technology and Corporate ESG Performance: Empirical Evidence from Chinese-Listed Firms,” Sustain., vol. 17, no. 2, 2025, doi: 10.3390/su17020420.
Z. Du and C. Chen, “AI vs. ESG? Uncovering a Bidirectional Struggle in China’s Sustainable Finance,” Sustain., vol. 17, no. 9, 2025, doi: 10.3390/su17094238.
G. Pavlidis, “Empowering sustainable finance with artificial intelligence: a framework for responsible implementation.,” A Res. Agenda Financ. Law Regul., pp. 23–38, 2025.
G. Marzi, M. Balzano, A. Caputo, and M. M. Pellegrini, “Guidelines for Bibliometric-Systematic Literature Reviews: 10 steps to combine analysis, synthesis and theory development,” Int. J. Manag. Rev., vol. 27, no. 1, pp. 81–103, 2025, doi: 10.1111/ijmr.12381.
A. A. Davidescu, I. Bîrlan, E. M. Manta, and C. M. Geambaşu, “Artificial Intelligence in ESG and Sustainable Finance: A Bibliometric Analysis of Research Trends,” Proc. Int. Conf. Bus. Excell., vol. 19, no. 1, pp. 1506–1517, 2025, doi: 10.2478/picbe-2025-0117.
A. M. Elhady and S. Shohieb, “AI ‑ driven sustainable finance : computational tools , ESG metrics , and global implementation,” 2025.
D. B. Vuković, S. Dekpo-Adza, and S. Matović, “AI integration in financial services: a systematic review of trends and regulatory challenges,” Humanit. Soc. Sci. Commun., vol. 12, no. 1, 2025, doi: 10.1057/s41599-025-04850-8.
J. K. Roy and L. Vasa, “Financial technology and environmental, social and governance in sustainable finance: a bibliometric and thematic content analysis,” Discov. Sustain., vol. 6, no. 1, 2025, doi: 10.1007/s43621-025-00934-2.
A. Shah, S. Mehendale, and S. Kanthi, “Efficacy of Large Language Models for Systematic Reviews,” 2024 2nd Int. Conf. Found. Large Lang. Model. FLLM 2024, pp. 29–35, 2024, doi: 10.1109/FLLM63129.2024.10852502.
Y. A. Pratama and S. Rumangkit, “Kecerdasan Buatan dan Transformasi Digital Kewirausahaan : Pemetaan Sistematis melalui Pendekatan Bibliometrik Tren dan Penelitian Masa Depan,” vol. 11, no. 1, pp. 13–28, 2025.
A. A. Rahma, S. Andriani, U. Islam, N. Maulana, and M. Ibrahim, “Literature Review Mengenai Tax Ratio Melalui Analisis,” vol. 2, no. 4, pp. 1265–1275, 2025.
X. Yu, L. Fan, and Y. Yu, “Artificial Intelligence and Corporate ESG Performance : A Mechanism Analysis Based on Corporate Efficiency and External Environment,” no. December 2024, 2025.
C. Gohr et al., “Artificial intelligence in sustainable development research,” vol. 8, no. August, 2025, doi: 10.1038/s41893-025-01598-6.
V. Bolón-Canedo, L. Morán-Fernández, B. Cancela, and A. Alonso-Betanzos, “A review of green artificial intelligence: Towards a more sustainable future,” Neurocomputing, vol. 599, 2024, doi: 10.1016/j.neucom.2024.128096.
W. Tushar et al., “Internet of Things for Green Building Management: Disruptive Innovations Through Low-Cost Sensor Technology and Artificial Intelligence,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 100–110, 2018, doi: 10.1109/MSP.2018.2842096.
B. Xu, “Risk Assessment of Green Intelligent Building Based on Artificial Intelligence,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/7584853.
B. Wang, S. Wang, S. Gong, X. Lyu, and X. Zhang, “Green Development and Self-Service Payment System of Intelligent Pet Public Toilet Based on Artificial Intelligence,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/1026182.
S. Yu et al., “Artificial Intelligence and Urban Green Space Facilities Optimization Using the LSTM Model: Evidence from China,” Sustain., vol. 15, no. 11, 2023, doi: 10.3390/su15118968.
Y. Liu, S. Qin, J. Li, and T. Jin, “Artificial Intelligence and Street Space Optimization in Green Cities: New Evidence from China,” Sustain., vol. 15, no. 23, 2023, doi: 10.3390/su152316367.
J. Cudzik, L. Nyka, and J. Szczepański, “Artificial intelligence in architectural education - green campus development research,” Glob. J. Eng. Educ., vol. 26, no. 1, pp. 20–25, 2024, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187284166&partnerID=40&md5=43ed2ac9b4f0a3436270f5d4909fedca
D. Hemanand et al., “Applications of Intelligent Model to Analyze the Green Finance for Environmental Development in the Context of Artificial Intelligence,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/2977824.
Y. Guan, Y. Huang, and H. Qin, “Inventory Management Optimization of Green Supply Chain Using IPSO-BPNN Algorithm under the Artificial Intelligence,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/8428964.
J. Ren and S. S. Salleh, “Green urban logistics path planning design based on physical network system in the context of artificial intelligence,” J. Supercomput., vol. 80, no. 7, pp. 9140–9161, 2024, doi: 10.1007/s11227-023-05796-x.
H. P. Nguyen, C. T. U. Nguyen, T. M. Tran, Q. H. Dang, and N. D. K. Pham, “Artificial Intelligence and Machine Learning for Green Shipping: Navigating towards Sustainable Maritime Practices,” Int. J. Informatics Vis., vol. 8, no. 1, pp. 1–17, 2024, doi: 10.62527/joiv.8.1.2581.
R. A. Ali and I. A. Al-Bazzaz, “A Case Study on Green Areas Change-Detection in Baghdad Using Artificial Intelligence,” Rev. d’Intelligence Artif., vol. 36, no. 6, pp. 873–880, 2022, doi: 10.18280/ria.360607.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Antika Zahrotul Kamalia, Arief Wibowo, Deni Mahdiana

This work is licensed under a Creative Commons Attribution 4.0 International License.





