Performance Comparison of Child Stunting Prediction Support Vector Machine vs Random Forest with Grid Search Optimization
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.5285Keywords:
Grid Search, Machine Learning, Random Forest, Stunting, Support Vector MachineAbstract
Stunting is a serious global health problem, particularly in developing countries. Its prevalence is high in Indonesia, reaching approximately 24.4% among children under five in 2021. This condition, defined as failure to thrive due to chronic malnutrition, repeated infections, and a lack of psychosocial stimulation, has long-term impacts on an individual's cognitive development and productive capacity. This study aims to conduct a comparative analysis of the Support Vector Machine and Random Forest algorithms in predicting stunting in children, with a focus on evaluating the impact of hyperparameter optimization using Grid Search on model performance. This study used the public stunting dataset from Kaggle and included data preprocessing steps such as handling missing values, duplication, encoding, and scaling. The data was then divided into 80% for training, 10% for testing, and 10% for validation. Comprehensive evaluation metrics such as precision, recall, F1-score, and ROC-AUC were also used to assess model performance. Grid Search optimization was applied to both models to find the best hyperparameter combination. Experimental results showed that Grid Search optimization significantly improved the accuracy of the SVM model from 94.29% to 98.37%. Meanwhile, the Random Forest model demonstrated very high performance, achieving 99.59% accuracy both before and after Grid Search optimization. These findings underscore the significant potential of machine learning models in supporting stunting prevention efforts for public health intervention policies. This research contributes to the development of machine learning-based decision support systems for public health, particularly in early detection and intervention strategies for stunting.
Downloads
References
M. de Onis and F. Branca, “Childhood stunting: A global perspective,” May 01, 2016, Blackwell Publishing Ltd. doi: 10.1111/mcn.12231.
F. Abdulla, M. M. A. El-Raouf, A. Rahman, R. Aldallal, M. S. Mohamed, and M. M. Hossain, “Prevalence and determinants of wasting among under-5 Egyptian children: Application of quantile regression,” Food Sci Nutr, vol. 11, no. 2, pp. 1073–1083, Feb. 2023, doi: 10.1002/fsn3.3144.
WHO, “World Health Organization.” [Online]. Available: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-jme-stunting-prevalence?utm_source=chatgpt.com
S. Grantham-Mcgregor, Y. B. Cheung, S. Cueto, P. Glewwe, L. Richter, and B. Strupp, “Child development in developing countries 1 Developmental potential in the fi rst 5 years for children in developing countries,” 2007. Accessed: Oct. 17, 2025. [Online]. Available: https://core.ac.uk/download/pdf/13103225.pdf
C Scheffler, M. Hermanussen, B. Bogin, D. S. Liana, F. Taolin, and P. M. V. P. Cempaka, “Stunting is not a synonym of malnutrition,” May 2019, doi: https://doi.org/10.1038/s41430-019-0439-4.
SSGI, Hasil Studi Status Gizi Indonesia (SSGI) Tingkat Nasiona, Provinsi dan Kabupaten/Kota Tahun 2021. 2021. Accessed: Oct. 17, 2025. [Online]. Available: https://dinkes.acehprov.go.id/l-content/uploads/Hasil_SSGI_Tahun_2021_Tingkat_Kabupaten_Kota.pdf
C. Mondon, P. Y. Tan, C. L. Chan, T. N. Tran, and Y. Y. Gong, “Prevalence, determinants, intervention strategies and current gaps in addressing childhood malnutrition in Vietnam: a systematic review,” BMC Public Health, vol. 24, no. 1, Dec. 2024, doi: 10.1186/s12889-024-18419-8.
A. Hamed, A. Hegab, and E. Roshdy, “Prevalence and factors associated with stunting among school children in Egypt,” Eastern Mediterranean Health Journal, vol. 26, no. 7, pp. 787–793, 2020, doi: 10.26719/emhj.20.047.
S. M. J. Rahman et al., “Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach,” PLoS One, vol. 16, no. 6 June 2021, Jun. 2021, doi: 10.1371/journal.pone.0253172.
J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: a practical introduction,” BMC Med Res Methodol, vol. 19, no. 1, Mar. 2019, doi: 10.1186/s12874-019-0681-4.
E.-S. M. El-Alfy and S. A. Mohammed, “A review of machine learning for big data analytics: bibliometric approach,” Technol Anal Strateg Manag, vol. 32, no. 8, pp. 984–1005, Aug. 2020, doi: 10.1080/09537325.2020.1732912.
O. N. Chilyabanyama et al., “Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia,” Children, vol. 9, no. 7, Jul. 2022, doi: 10.3390/children9071082.
H. Shen, H. Zhao, and Y. Jiang, “Machine Learning Algorithms for Predicting Stunting among Under-Five Children in Papua New Guinea,” Children, vol. 10, no. 10, Oct. 2023, doi: 10.3390/children10101638.
V. Desai, J. Cottrell, and L. Sowerby, “No longer a blank cheque: a narrative scoping review of physician awareness of cost,” Public Health, vol. 223, pp. 15–23, Oct. 2023, doi: 10.1016/j.puhe.2023.07.009.
M. S. Haris, A. N. Khudori, and W. T. Kusuma, “Perbandingan Metode Supervised Machine Learning untuk Prediksi Prevalensi Stunting di Provisi Jawa Timur,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, p. 1571, Dec. 2022, doi: 10.25126/jtiik.2022976744.
A. B. Zemariam et al., “Prediction of stunting and its socioeconomic determinants among adolescent girls in Ethiopia using machine learning algorithms,” PLoS One, vol. 20, no. 1 January, Jan. 2025, doi: 10.1371/journal.pone.0316452.
E. Indrisari, H. Febiansyah, and B. Adiwinoto, “A Systematic Literature Review on the Application of Machine Learning for Predicting Stunting Prevalence in Indonesia (2020–2024),” 2025. doi: 10.32736/sisfokom.v14i3.2366.
I. Rahmi, M. Susanti, H. Yozza, and F. Wulandari, “CLASSIFICATION OF STUNTING IN CHILDREN UNDER FIVE YEARS IN PADANG CITY USING SUPPORT VECTOR MACHINE,” Barekeng, vol. 16, no. 3, pp. 771–778, Sep. 2022, doi: 10.30598/barekengvol16iss3pp771-778.
M. As and E. R. Subhiyakto, “Performance Comparison of Random Forest , SVM , and XGBoost Algorithms with SMOTE for Stunting Prediction,” vol. 9, no. 4, pp. 1163–1169, 2025, doi: https://doi.org/10.30871/jaic.v9i4.9701.
E. Prasetyo and K. Nugroho, “Optimasi Klasifikasi Data Stunting Melalui Ensemble Learning pada Label Multiclass dengan Imbalance Data Optimizing Stunting Data Classification Through Ensemble Learning on Multiclass Labels with Imbalance Data,” 2024. doi: https://doi.org/10.62411/tc.v23i1.9779.
A. H. Mubarok, P. Pujiono, D. Setiawan, D. F. Wicaksono, and E. Rimawati, “Parameter Testing on Random Forest Algorithm for Stunting Prediction,” Sinkron, vol. 9, no. 1, pp. 107–116, 2025, doi: 10.33395/sinkron.v9i1.14264.
J. Sadhasivam, A. Rathore, I. Bose, S. Bhattacharjee, and S. Jayavel, “A Survey of Machine Learning Algorithms,” International Journal of Engineering Trends and Technology, vol. 68, 2020, [Online]. Available: http://www.ijettjournal.org
C. Cortes, V. Vapnik, and L. Saitta, “Support-Vector Networks Editor,” Kluwer Academic Publishers, 1995. Accessed: Oct. 15, 2025. [Online]. Available: https://link.springer.com/article/10.1007/BF00994018
R. Kusumaningrum, T. A. Indihatmoko, S. R. Juwita, A. F. Hanifah, K. Khadijah, and B. Surarso, “Benchmarking of multi-class algorithms for classifying documents related to stunting,” Applied Sciences (Switzerland), vol. 10, no. 23, pp. 1–13, Dec. 2020, doi: 10.3390/app10238621.
L. Breiman, “Random Forests,” 2001. [Online]. Available: https://link.springer.com/article/10.1023/A:1010933404324
J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter Optimization Yoshua Bengio,” 2012. [Online]. Available: http://scikit-learn.sourceforge.net.
S. Abd El-Ghany and A. A. Abd El-Aziz, “A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases,” Computers, Materials and Continua, vol. 75, no. 2, pp. 4633–4648, 2023, doi: 10.32604/cmc.2023.035779.
S. Sutarmi, W. Warijan, T. Indrayana, D. P. P. B, and I. Gunawan, “Machine Learning Model For Stunting Prediction,” Jurnal Health Sains, vol. 4, no. 9, pp. 10–23, 2023, doi: 10.46799/jhs.v4i9.1073.
N. Fathirachman Mahing, A. Lazuardi Gunawan, A. Foresta Azhar Zen, F. Abdurrachman Bachtiar, and S. Agung Wicaksono, “Klasifikasi Tingkat Stress dari Data Berbentuk Teks dengan Menggunakan Algoritma Support Vector Machine (SVM) dan Random Forest,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 7, pp. 1527–1536, 2023, doi: 10.25126/jtiik.1078010.
S. Lestari and F. Ilmu Komputer, “Prediction of Stunting in Toddlers Using Bagging and Random Forest Algorithms,” Jurnal dan Penelitian Teknik Informatika, vol. 8, no. 2, 2024, doi: 10.33395/v8i2.13448.
R. Gustriansyah, N. Suhandi, S. Puspasari, and A. Sanmorino, “Machine Learning Method to Predict the Toddlers’ Nutritional Status,” Jurnal Infotel, vol. 16, no. 1, pp. 32–43, 2024, doi: 10.20895/infotel.v15i4.988.
S. Belarouci, S. Bouchikhi, and M. A. Chikh, “Comparative study of balancing methods: case of imbalanced medical data,” Int J Biomed Eng Technol, vol. 21, no. 3, p. 247, 2016, doi: 10.1504/IJBET.2016.078288.
I. Septiana and D. Alita, “Perbandingan Random Forest dan SVM dalam Analisis Sentimen Quick Count Pemilu 2024,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 3, pp. 224–233, Dec. 2024, doi: 10.30591/jpit.v9i3.6640.
F. Arden and C. Safitri, “Hyperparameter Tuning Algorithm Comparison with Machine Learning Algorithms,” in 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), IEEE, Dec. 2022, pp. 183–188. doi: 10.1109/ICITISEE57756.2022.10057630.
A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM Comput Surv, vol. 31, no. 3, pp. 264–323, 1999, doi: 10.1145/331499.331504.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marthinus Ikun Elim, Ema Utami

This work is licensed under a Creative Commons Attribution 4.0 International License.





