COMPARATIVE ANALYSIS OF CONTRAST ENHANCEMENT METHODS FOR CLASSIFICATION OF PEKALONGAN BATIK MOTIFS USING CONVOLUTIONAL NEURAL NETWORK

  • Muhammad Bayu Kurniawan Magister of Informatics Engineering, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia
  • Ema Utami Magister of Informatics Engineering, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia
Keywords: classification, contrast enhancement, contrast-limited adaptive histogram equalization, convolutional neural networks, histogram equalization, Pekalongan batik motifs

Abstract

Batik artists in Pekalongan have freedom in determining motifs, creating a diversity of distinctive batik motifs. However, this diversity often makes it difficult for people to recognize the different motifs, as visual identification requires in-depth knowledge. The lack of understanding about Pekalongan batik is a challenge in recognizing these motifs. To overcome this challenge, an efficient and accurate method of motif identification is needed. This study aims to analyze the efficacy of contrast enhancement methods in improving the classification results of Pekalongan batik motifs using convolutional neural networks (CNN) with ResNet50 architecture. The dataset of 480 images was collected directly from Museum Batik Pekalongan and split into three distinct categories: 15% for validation, 15% for testing, and 70% for training. Two contrast enhancement methods: contrast limited adaptive histogram equalization (CLAHE) and histogram equalization (HE), were applied to create additional datasets. The Adam optimizer was used to train the model over 50 epochs at a learning rate of 0.001. The test results show that the original dataset contrast-enhanced with CLAHE reaches the best accuracy of 83%, followed by the original dataset contrast-enhanced with HE at 81%, and the original dataset at 76%. This finding shows that the application of contrast enhancement methods, especially CLAHE, can increase the model's accuracy in classifying batik motifs.

Downloads

Download data is not yet available.

References

R. Febriani, L. Knippenberg, and N. Aarts, “The making of a national icon: Narratives of batik in Indonesia,” Cogent Arts Humanit., vol. 10, no. 1, 2023, doi: 10.1080/23311983.2023.2254042.

N. Dewi Girsang and Muhathir, “Classification Of Batik Images Using Multilayer Perceptron With Histogram Of Oriented Gradient Feature Extraction,” in Proceeding Int. Conf. Sci. Eng., 2021, vol. 4, pp. 197–204.

S. Maziyah, A. Alamsyah, and D. T. Lestari, “Jlamprang Batik Motive: Representation of the Natural and Cultural Environment of Pekalongan City,” in E3S Web Conf., 2021, vol. 317, p. 01005, doi: 10.1051/e3sconf/202131701005.

Y. P. Supriono, Ensiklopedia The Heritage Of Batik, Identitas Pemersatu Kebanggaan Bangsa. Yogyakarta: CV Andi Offset (Penerbit Andi).

T. Yuniawan and I. Zulaeha, “Eco-linguistic Analysis on Flora and Fauna Lexicons on the Motifs of Batik Pekalongan, Indonesia,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 6549–6566, 2020.

C. Zuo et al., "Deep learning in optical metrology: a review," Light: Science & Applications, vol. 11, no. 1, pp. 1-54, 2022, doi: 10.1038/s41377-022-00714-x.

L. Mohammadpour, T. C. Ling, C. S. Liew, and A. Aryanfar, “A Survey of CNN-Based Network Intrusion Detection,” Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12168162.

R. F. Alya, M. Wibowo, and P. Paradise, “Classification of Batik Motif Using Transfer Learning on Convolutional Neural Network (Cnn),” J. Tek. Inform., vol. 4, no. 1, pp. 161–170, 2023, doi: 10.52436/1.jutif.2023.4.1.564.

B. Tugrul, E. Elfatimi, and R. Eryigit, “Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review,” Agric., vol. 12, no. 8, 2022, doi: 10.3390/agriculture12081192.

J. Qiang, D. Wu, H. Du, H. Zhu, S. Chen, and H. Pan, “Review on Facial-Recognition-Based Applications in Disease Diagnosis,” Bioengineering, vol. 9, no. 7, pp. 1–16, 2022, doi: 10.3390/bioengineering9070273.

D. AlSaeed and S. F. Omar, “Brain MRI Analysis for Alzheimer’s Disease Diagnosis Using CNN-Based Feature Extraction and Machine Learning,” Sensors, vol. 8, p. 22, 2022, doi: 10.3390/s22082911.

S. Ariessaputra, V. H. Vidiasari, S. M. Al Sasongko, B. Darmawan, and S. Nababan, “Classification of Lombok Songket and Sasambo Batik Motifs Using the Convolution Neural Network (CNN) Algorithm,” Int. J. Informatics Vis., vol. 8, no. 1, pp. 38–44, 2024, doi: 10.62527/joiv.8.1.1386.

D. A. Anggoro, A. A. T. Marzuki, and W. Supriyanti, “Classification of Solo Batik patterns using deep learning convolutional neural networks algorithm,” Telkomnika (Telecommunication Comput. Electron. Control), vol. 22, no. 1, pp. 232–240, 2024, doi: 10.12928/TELKOMNIKA.v22i1.24598.

B. J. Filia et al., “Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset,” in Procedia Comput. Sci., 2023, vol. 227, pp. 508–517, doi: 10.1016/j.procs.2023.10.552.

M. A. Rasyidi, R. Handayani, and F. Aziz, “Identification of batik making method from images using convolutional neural network with limited amount of data,” Bull. Electr. Eng. Informatics, vol. 10, no. 3, pp. 1300–1307, 2021, doi: 10.11591/eei.v10i3.3035.

C. U. Khasanah, E. Utami, and S. Raharjo, “Implementation of Data Augmentation Using Convolutional Neural Network for Batik Classification,” in 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM), 2020, pp. 20–24.

S. Saifullah and R. Drezewski, “Modified Histogram Equalization for Improved CNN Medical Image Segmentation,” in Procedia Comput. Sci., 2023, vol. 225, pp. 3021–3030, doi: 10.1016/j.procs.2023.10.295.

M. Zheng and W. Luo, “Underwater Image Enhancement Using Improved CNN Based Defogging,” Electron., vol. 11, no. 1, 2022, doi: 10.3390/electronics11010150.

K. G. Dhal, A. Das, S. Ray, J. Gálvez, and S. Das, “Histogram Equalization Variants as Optimization Problems: A Review,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1471–1496, 2021, doi: 10.1007/s11831-020-09425-1.

D. Mungra, A. Agrawal, P. Sharma, S. Tanwar, and M. S. Obaidat, “PRATIT: a CNN-based emotion recognition system using histogram equalization and data augmentation,” Multimed. Tools Appl., vol. 79, no. 3–4, pp. 2285–2307, 2020, doi: 10.1007/s11042-019-08397-0

S. S. M. Sheet, T. S. Tan, M. A. As’ari, W. H. W. Hitam, and J. S. Y. Sia, “Retinal disease identification using upgraded CLAHE filter and transfer convolution neural network,” ICT Express, vol. 8, no. 1, pp. 142–150, 2022, doi: 10.1016/j.icte.2021.05.002.

G. Alwakid, W. Gouda, and M. Humayun, “Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement,” Healthc., vol. 11, no. 6, pp. 1–17, 2023, doi: 10.3390/healthcare11060863

A. H. Rangkuti and V. A. Hasbi, “A Novel Approach of Animal Skin Classification Using CNN Model with CLAHE and SUCK Method Support,” Int. J. Informatics Vis., 2023, vol. 7, pp.864-863, doi: 10.30630/joiv.7.3.1153

R. I. Bendjillali, M. Beladgham, K. Merit, and A. Taleb-Ahmed, “Improved facial expression recognition based on DWT feature for deep CNN,” Electron., vol. 8, no. 3, 2019, doi: 10.3390/electronics8030324.

R. Fan, X. Li, S. Lee, T. Li, and H. L. Zhang, “Smart image enhancement using clahe based on an f-shift transformation during decompression,” Electron., vol. 9, no. 9, pp. 1–19, 2020, doi: 10.3390/electronics9091374.

A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex Intell. Syst., vol. 7, no. 5, pp. 2179–2198, 2021, doi: 10.1007/s40747-021-00428-4.

T. Mao and D. X. Zhou, “Rates of approximation by ReLU shallow neural networks,” J. Complex., vol. 79, p. 101784, 2023, doi: 10.1016/j.jco.2023.101784.

J. H. Ahn et al., “Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms,” J. Pers. Med., vol. 11, no. 4, 2021, doi: 10.3390/jpm11040239.

A. Sai Bharadwaj Reddy and D. Sujitha Juliet, “Transfer learning with RESNET-50 for malaria cell-image classification,” in Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP, 2019, pp. 945–949, doi: 10.1109/ICCSP.2019.8697909.

Q. Gu, L. Zhu, and Z. Cai, “Erratum to: Evaluation Measures of the Classification Performance of Imbalanced Data Sets,” pp. E1–E1, 2009, doi: 10.1007/978-3-642-04962-0_55.

G. M. Foody, “Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient,” PLoS One, vol. 18, no. 10, pp. 1–27, 2023, doi: 10.1371/journal.pone.0291908.

D. G. T. Meranggi, N. Yudistira, and Y. A. Sari, “Batik Classification Using Convolutional Neural Network with Data Improvements,” Int. J. Informatics Vis., vol. 6, no. 1, pp. 6–11, 2022, doi: 10.30630/joiv.6.1.716.

A. Ergasheva, F. Akhmedov, A. Abdusalomov, and W. Kim, “Advancing Maritime Safety: Early Detection of Ship Fires through Computer Vision, Deep Learning Approaches, and Histogram Equalization Techniques,” Fire, vol. 7, no. 3, 2024, doi: 10.3390/fire7030084.

A. Wanto, Y. Yuhandri, and O. Okfalisa, “Optimization Accuracy of CNN Model by Utilizing CLAHE Parameters in Image Classification Problems,” in 2023 Int. Conf. Networking, Electr. Eng. Comput. Sci. Technol. (IConNECT), 2023, pp. 253–258.

S. Hadiyoso, S. Aulia, and I. D. Irawati, “Diagnosis of lung and colon cancer based on clinical pathology images using convolutional neural network and CLAHE framework,” Int. J. Appl. Sci. Eng., vol. 20, pp. 1–7, 2022, doi: 10.6703/IJASE.202303_20(1).006.

S. Asghar et al., “Water Classification Using Convolutional Neural Network,” IEEE Access, vol. 11, no. July, pp. 78601–78612, 2023, doi: 10.1109/ACCESS.2023.3298061.

Published
2024-12-29
How to Cite
[1]
M. B. Kurniawan and E. Utami, “COMPARATIVE ANALYSIS OF CONTRAST ENHANCEMENT METHODS FOR CLASSIFICATION OF PEKALONGAN BATIK MOTIFS USING CONVOLUTIONAL NEURAL NETWORK”, J. Tek. Inform. (JUTIF), vol. 5, no. 6, pp. 1779-1787, Dec. 2024.