Clustering and Modeling of Daily Weather Pattern Distribution in Makassar City Using Hybrid DBSCAN-Gaussian Mixture Model
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.5254Keywords:
Clustering, Daily Weather, DBSCAN, GMM, Seasonal PatternAbstract
Dynamic and irregular daily weather changes present major challenges in understanding seasonal patterns. Data uncertainty, outliers, and inter-season variability further complicate weather analysis using conventional methods. To address this issue, this study integrates Density-Based Spatial Clustering of Application with Noise (DBSCAN) and Gaussian Mixture Model (GMM) to analyze daily weather patterns in Makassar City. A total of 2,192 daily records from 2019 to 2024, including rainfall, specific humidity, atmospheric pressure, and wind speed, were examined. DBSCAN detected one dominant cluster (2019 data) and 173 outliers. The main cluster was further partitioned by GMM into three sub-clusters representing the wet (511 records, 13.39 mm rainfall), dry (633 records, 0.15 mm), and transition (875 records, 2.53 mm) seasons. GMM identified 1,764 fixed clusters and 255 ambiguous data points, with a log-likelihood of 5091.22 and the highest Silhouette Score of 0.188. Comparative evaluation demonstrated that the hybrid DBSCAN-GMM achieved superior performance (Silhouette Score = 0.1434) compared to DBSCAN or GMM individually. The novelty of this research lies in applying the DBSCAN-GMM integration, which is rarely used in tropical weather analysis, to capture seasonal structure and anomalies adaptively. This study contributes methodologically to clustering-based weather modeling and practically supports applications such as agricultural planning, disaster mitigation, and adaptive climate strategies in tropical regions.
Downloads
References
M. Yusuf, A. Setyanto, and K. Aryasa, “Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 6, no. 1, pp. 405–417, 2022.
K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate Medium-ange global weather forecasting with 3D neural networks,” Nature, vol. 619, no. 7970, pp. 533–538, 2023, doi: 10.1038/s41586-023-06185-3.
E. Fiola, F. Yulius, and D. M. Risani, “Metode Seleksi Variabel dalam Pemodelan Regresi Linear Data Curah Hujan Provinsi Lampung,” in Seminar Nasional Sains Data 2024 (SENADA), 2024, pp. 351–366. doi: 10.33005/senada.v4i1.213.
D. E. Youlistia, R. Widiastuti, D. P. Meirylia, F. D. T. Amijaya, and A. A. Fauzi, “Analisis dan Prediksi Pengaruh Kelembaban Udara Terhadap Curah Hujan Bulanan 3 Wilayah Provinsi Kalimantan Utara Menggunakan Metode Regresi Berganda,” INTERVAL : Jurnal Ilmiah Matematika, vol. 4, no. 2, pp. 72–78, 2024, doi: 10.33751/interval.v4i2.11653.
A. Hafid and A. P. Islamy, Statistik Daerah Kota Makassar 2024, vol. 10, no. 1. Badan Pusat Statistik (BPS) Kota Makassar, 2024.
M. Maulita and N. Nurdin, “Pendekatan Data Mining Untuk Analisa Curah Hujan Menggunakan Metode Regresi Linear Berganda (Studi Kasus: Kabupaten Aceh Utara),” IDEALIS : Indonesia Journal Information System, vol. 6, no. 2, pp. 99–106, 2023, doi: 10.36080/idealis.v6i2.3034.
R. Ismayanti and W. M. Baihaqi, “Prediksi Potensi Suatu Wilayah Untuk Menjadi PLTS Dengan Machine Learning,” Jurnal Informatika dan Teknologi Interaktif, vol. 1, no. 2, pp. 66–72, 2024, doi: 10.63547/jiite.v1i2.6.
A. Hot Iman, F. Ready Permana, G. Putro Wardana, R. Kemmy Rachmansyah, and M. Mega Santoni, “Perbandingan Algoritma Klasifikasi Random Forest dan Extreme Gradient Boosting pada Dataset Cuaca Provinsi DKI Jakarta Tahun 2018,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2022, pp. 593–601.
Z. Ben Bouallègue et al., “The Rise of Data-Driven Weather Forecasting A First Statistical Assessment of Machine Learning–Based Weather Forecasts in an Operational-Like Context,” Bulletin of American Meteorological Society, vol. 105, no. 6, pp. E864–E883, 2024, doi: 10.1175/BAMS-D-23-0162.1.
S. Ventura, J. R. Miró, J. C. Peña, and G. Villalba, “Analysis of Synoptic Weather Patterns of Heatwave Events,” Climate Dynamics, vol. 61, no. 9–10, pp. 4679–4702, 2023, doi: 10.1007/s00382-023-06828-1.
E. Giama et al., “Building Energy Simulations Based on Weather Forecast Meteorological Model: The Case of an Institutional Building in Greece,” Energies, vol. 16, no. 1, 2023, doi: 10.3390/en16010191.
T. Kurihana et al., “Identifying Climate Patterns Using Clustering Autoencoder Techniques,” Artificial Intelligence for the Earth Systems, vol. 3, no. 3, pp. 1–18, 2024, doi: 10.1175/aies-d-23-0035.1.
E. A. Mohammed, X. Zhi, and K. A. Abdela, “Extreme Weather Patterns in Ethiopia: Analyzing Extreme Temperature and Precipitation Variability,” Atmosphere, vol. 16, no. 2, p. 133, 2025, doi: 10.3390/atmos16020133.
B. V. Malozyomov, N. V. Martyushev, S. N. Sorokova, E. A. Efremenkov, D. V. Valuev, and M. Qi, “Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks,” Mathematics, vol. 12, no. 3, pp. 1–17, 2024, doi: 10.3390/math12030480.
B. Bochenek, “Machine Learning in Weather Prediction and Climate Analyses — Applications and Perspectives,” Atmosphere, pp. 1–16, 2022, doi: 10.3390/atmos13020180.
M. Abdulraheem, J. B. Awotunde, A. E. Adeniyi, I. D. Oladipo, and S. O. Adekola, “Weather Prediction Performance Evaluation on Selected Machine Learning Algorithms,” IAES International Journal of Artificial Intelligence, vol. 11, no. 4, pp. 1535–1544, 2022, doi: 10.11591/ijai.v11.i4.pp1535-1544.
S. Z. Husain et al., “Leveraging Data-Driven Weather Models for Improving Numerical Weather Prediction Skill Through Large-Scale Spectral Nudging,” Weather and Forecasting (American Meteorological Society), vol. 40, no. 9, pp. 1749–1771, 2025, doi: 10.1175/waf-d-24-0139.1.
A. R. Siems-Anderson, “The use of Vehicle-Based Observations in Weather Prediction and Decision Support,” Meteorological Applications, vol. 31, no. 4, pp. 1–11, 2024, doi: 10.1002/met.2225.
H. Shaiba et al., “Weather Forecasting Prediction Using Ensemble Machine Learning for Big Data Applications,” Computers, Materials and Continua, vol. 73, no. 2, pp. 3367–3382, 2022, doi: 10.32604/cmc.2022.030067.
C. Wang, Y. Sun, S. Lv, C. Wang, H. Liu, and B. Wang, “Intrusion Detection System Based on One-Class Support Vector Machine and Gaussian Mixture Model,” Electronics, vol. 12, no. 4, pp. 1–16, 2023, doi: 10.3390/electronics12040930.
Y. Zhang et al., “Characterizing the Conditional Galaxy Property Distribution Using Gaussian Mixture Models,” Astrophysical Journal, vol. 16, no. 2, p. 159, 2023, doi: 10.3847/1538-4357/accb90.
B. Wang, W. Li, and Z. H. Khattak, “Anomaly Detection in Connected and Autonomous Vehicle Trajectories Using LSTM Autoencoder and Gaussian Mixture Model,” Electronics, vol. 13, no. 7, 2024, doi: 10.3390/electronics13071251.
B. Yu, J. Liang, and J. W. W. Ju, “Damage Evolution Analysis of Concrete Based on Multi-Feature Acoustic Emission and Gaussian Mixture Model Clustering,” International Journal of Damage Mechanics, vol. 33, no. 6, pp. 474–494, 2024, doi: 10.1177/10567895241235581.
Harintaka and C. Wijaya, “Automatic Point Cloud Segmentation using RANSAC and DBSCAN Algorithm for Indoor Model,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 6, pp. 1317–1325, 2023, doi: 10.12928/TELKOMNIKA.V21I6.25299.
X. An et al., “STRP-DBSCAN: A Parallel DBSCAN Algorithm Based on Spatial-Temporal Random Partitioning for Clustering Trajectory Data,” Applied Sciences, vol. 13, no. 20, 2023, doi: 10.3390/app132011122.
E. L. Cahapin, B. A. Malabag, C. S. Santiago, J. L. Reyes, G. S. Legaspi, and K. L. Adrales, “Clustering of Students Admission DataUsing K-Means, Hierarchical, and DBSCAN Algorithms,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 6, pp. 3647–3656, 2023, doi: 10.11591/eei.v12i6.4849.
M. A. Harriz and H. Setiyowati, “Komparasi Algoritma Decision Tree Dan Knn Dalam Mengklasifikasi Daerah Berdasarkan Produksi Listrik,” JIKO (Jurnal Informatika dan Komputer), vol. 7, no. 2, p. 167, 2023, doi: 10.26798/jiko.v7i2.787.
A. I. Caniago, W. Kaswidjanti, and Juwairiah, “Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction,” Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 3, pp. 345–360, 2021, doi: 10.31515/telematika.v18i3.6650.
N. N. Alyarahma, G. Kholijah, and C. Sormin, “Pengelompokan Provinsi di Indonesia Menggunakan Gaussian Mixture Model Berdasarkan Indikator Kemiskinan,” J Journal of Mathematic Theory and Applications (JOMTA), vol. 6, no. 2, pp. 158–167, 2024, doi: 10.31605/jomta.v6i2.4032.
P. K. Mayakuntla, A. Ganguli, and D. Smyl, “Gaussian Mixture Model-Based Classification of Corrosion Severity in Concrete Structures Using Ultrasonic Imaging,” Journal of Nondestructive Evauation., vol. 42, no. 2, pp. 1–20, 2023, doi: 10.1007/s10921-023-00939-9.
E. D. Suanda, W. Somayasa, and M. K. Djafar, “Estimasi Maksimum Likelihood Untuk Parameter Dalam Model Regresi Beta,” Jurnal Jurusan Matematika FMIPA, vol. 3, no. 2, pp. 288–297, 2023, doi: 10.33772/jmks.v3i2.44.
Z. Ren, “Optimal distribution-free concentration for the log-likelihood function of Bernoulli variables,” Journal of Inequalities and Application, vol. 2023, no. 1, pp. 1–11, 2023, doi: 10.1186/s13660-023-02995-1.
D. K. Wardy, I. K. G. D. Putra, and N. K. D. Rusjayanthi, “Clustering Artikel pada Portal Berita Online Menggunakan Metode K-Means,” Journal Ilmiah Teknologi dan Komputer (JITTER), vol. 3, no. 1, pp. 3–11, 2022.
B. Rodrigues de Oliveira et al., “Temporal Variability in Soybean Sowing and Harvesting According to K-Means and Silhouette Scores,” Trends in Agricultural and Environmental Sciences, vol. 2, pp. 1–15, 2024. doi: 10.46420/taes.e240010.
Y. Januzaj, E. Beqiri, and A. Luma, “Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique,” International of Journal Online Biomedical Engineering, vol. 19, no. 4, pp. 174–182, 2023, doi: 10.3991/ijoe.v19i04.37059.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Risaldi, Ayu Safitri, Andi Akram Nur Risal, Dewi Fatmarani Surianto, Dyah Darma Andayani, Marwan Ramdhany Edy, Firdaus, Jumadi M Parenreng

This work is licensed under a Creative Commons Attribution 4.0 International License.
 
						
 
  
 




 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 