Labeling Optimization and Hybrid CNN Model in Sentiment Analysis of Movie Reviews with Slang Handling
DOI:
https://doi.org/10.52436/1.jutif.2025.6.6.4465Keywords:
alay dictionary, hybrid CNN, movie commentary, sentiment analysis, slang, TF-IDFAbstract
This research focuses on the development of a hybrid Convolutional Neural Network (CNN) model for sentiment analysis of movie comments, specifically designed to overcome the challenges of handling nonstandard language and slang. Slang is often an obstacle in sentiment analysis due to its non-standard nature and is difficult to recognize by traditional algorithms. By utilizing an kamusalay as a data preprocessing step, this research successfully converts slang words into standardized forms, thus improving the quality of data used in modeling. The data was collected through YouTube Data API on the comments of the movie “Pengabdi Setan 2: Communion” and processed using tokenization, stemming, stopwords removal, and TF-IDF feature extraction techniques. The hybrid model combines machine learning algorithms such as Naive Bayes, Logistic Regression, and Random Forest with CNN's ability to extract complex spatial patterns from text data. The evaluation results show that this model is able to achieve up to 95% accuracy, with consistently high precision, recall, and F1-score. This approach not only improves the accuracy of sentiment analysis, but also provides an effective solution for handling non-standard language variations, making it relevant for application in digital opinion analysis on social media.
Downloads
References
Y. K. Dwivedi et al., “Setting the future of digital and social media marketing research: Perspectives and research propositions,” Int. J. Inf. Manage., vol. 59, no. May 2020, p. 102168, 2021, doi: 10.1016/j.ijinfomgt.2020.102168.
E. P. Fahlevy and M. A. Pribadi, “Pengaruh Electronic Word of Mouth (E-WoM) terhadap Keputusan Pembelian Tiket Film Oppenheimer,” Prologia, vol. 8, no. 1, pp. 143–151, 2024, doi: 10.24912/pr.v8i1.27568.
M. Aldan Nur Zen and A. S. Sitanggang, “Analisis Dampak Sosial Media Dalam Pengembangan Sistem Informasi,” Cerdika J. Ilm. Indones., vol. 3, no. 7, pp. 671–682, 2023, doi: 10.59141/cerdika.v3i7.647.
S. O. Pertiaz and S. P. Sunaryo, “Penggunaan Media Sosial oleh PT KAI dalam Meningkatkan Komunikasi dengan Pelanggan,” J. Penelit. Inov., vol. 3, no. 2, pp. 385–394, 2023, doi: 10.54082/jupin.169.
S. I. Liestyasari, O. H. Nurcahyono, D. Astutik, and N. Nurhadi, “Literasi Penggunaan Media Sosial Sehat Bagi Forum Anak Surakarta,” Dedik. Community Serv. Reports, vol. 2, no. 2, pp. 58–65, 2020, doi: 10.20961/dedikasi.v2i2.37834.
L. Rahayuwati, R. H. Permana, and A. Labertha, “Pemutaran Video, Diskusi dan Penggunaan Standing Banner pada Siswa untuk Mencegah Kecanduan Media Sosial,” Media Karya Kesehat., vol. 2, no. 1, pp. 85–95, 2019, doi: 10.24198/mkk.v2i1.21667.
A. Gupta, S. Pandey, M. P. Behera, S. Darshana, and A. Dash, “Sentiment Analysis Of Movie Review Using Machine Learning,” Educ. Adm. Theory Pract., vol. 30, no. 5, pp. 7344–7354, 2024, doi: 10.53555/kuey.v30i5.4159.
K. C. Eleison, S. U. I. Hutahaean, S. C. Tampubolon, T. M. Panggabean, and I. Fitriyaningsih, “An empirical evaluation of phrase-based statistical machine translation for Indonesia slang-word translator,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 3, pp. 1803–1813, 2022, doi: 10.11591/ijeecs.v25.i3.pp1803-1813.
U. Tursini and P. I. Fauziah, “Slang Words on Rampage Movie,” Rhizome J. Kaji. Ilmu Ilmu Hum., vol. 2, no. 2, pp. 1–8, 2022, doi: 10.56393/rhizome.v2i1.479.
C. Suryanovika and L. N. Affini, “Pejorative Words Indicating Indonesian Hate Speech,” Kata, vol. 25, no. 1, pp. 53–64, 2023, doi: 10.9744/kata.25.1.53-64.
H. Gong, A. Valido, K. M. Ingram, G. Fanti, S. Bhat, and D. L. Espelage, “Abusive Language Detection in Heterogeneous Contexts: Dataset Collection and the Role of Supervised Attention,” 35th AAAI Conf. Artif. Intell. AAAI 2021, vol. 17A, pp. 14804–14812, 2021, doi: 10.1609/aaai.v35i17.17738.
E. Duque, G. L. de Aguileta, J. M. C. Barbany, and M. J. Foraster, “No Time to Lose Sex-appeal. Love and Attractiveness in the last James Bond Movie 2021,” Masculinities Soc. Chang., vol. 11, no. 2, pp. 102–128, 2022, doi: 10.17583/mcs.9777.
F. Toye, K. Seers, and K. Barker, “‘It’s like she’s talking about me’ — Exploring the value and potential impact of a YouTube film presenting a qualitative evidence synthesis about chronic pain: An analysis of online comments,” Can. J. Pain, vol. 4, no. 3, pp. 61–70, 2020, doi: 10.1080/24740527.2020.1785853.
M. Khairudin, A. Sukendar, and A. Somantri, “Analisis Sentimen Film Di Twitter Menggunakan Metode Support Vector Machine,” J. Sains dan Sist. Teknol. Inf., vol. 5, no. 1, pp. 97–102, 2023, doi: 10.59811/sandi.v5i1.47.
R. S. A. Al-Zaelani, Y. R. Ramadhan, and M. A. Komara, “Analisis Sentimen Review Produk Motor Honda Pcx Dan Yamaha N-Max Pada Twitter Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1812–1816, 2023, doi: 10.36040/jati.v7i3.7008.
A. C. Kamilla, N. Priyani, R. Priskila, and V. H. Pranatawijaya, “Analisis Sentimen Film Agak Laen Dengan Kecerdasan Buatan: Text Mining Metode Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2923–2928, 2024, doi: 10.36040/jati.v8i3.9587.
W. M. Baihaqi and A. Munandar, “Sentiment Analysis of Student Comment on the College Performance Evaluation Questionnaire Using Naïve Bayes and IndoBERT,” JUITA J. Inform., vol. 11, no. 2, p. 213, 2023, doi: 10.30595/juita.v11i2.17336.
M. M. Aziz, M. D. Purbalaksono, and A. Adiwijaya, “Method comparison of Naïve Bayes, Logistic Regression, and SVM for Analyzing Movie Reviews,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1714–1720, 2023, doi: 10.47065/bits.v4i4.2644.
S. V. Sureshbhai and T. Nakrani, “A Literature Review : Enhancing Sentiment Analysis of Deep Learning Techniques Using Generative AI Model,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 10, no. 3, pp. 530–540, 2024, doi: 10.32628/cseit24103204.
N. Hicham, S. Karim, and N. Habbat, “Enhancing Arabic Sentiment Analysis in E-Commerce Reviews on Social Media Through a Stacked Ensemble Deep Learning Approach,” Math. Model. Eng. Probl., vol. 10, no. 3, pp. 790–798, 2023, doi: 10.18280/mmep.100308.
D. F. Sjoraida, B. W. K. Guna, and D. Yudhakusuma, “Analisis Sentimen Film Dirty Vote Menggunakan BERT (Bidirectional Encoder Representations from Transformers),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 2, pp. 393–404, 2024, doi: 10.35870/jtik.v8i2.1580.
N. Fadhillah and A. Nurweni, “Analyzing the Word Formation of Slang Vocabulary Employed by Fathia Izzati on YouTube,” Abjadia Int. J. Educ., vol. 8, no. 2, pp. 215–223, 2023, doi: 10.18860/abj.v8i2.23480.
H. Junianto, P. Arsi, B. A. Kusuma, and D. I. S. Saputra, “Evaluasi Aplikasi Raileo Melalui Analisis Sentimen Ulasan Playstore Dengan Metode Naive Bayes,” SINTECH (Science Inf. Technol. J., vol. 7, no. 1, pp. 27–40, 2024, doi: 10.31598/sintechjournal.v7i1.1505.
D. Hardiansyah, R. Z. Abdul, and M. Said, “The Classification Method is Used for Sentiment Analysis in My Telkomsel,” vol. 8, no. 2, 2024.
G. Dubey et al., “A Hybrid Convolutional Network and Long Short-Term Memory (HBCNLS) model for Sentiment Analysis on Movie Reviews,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 4, pp. 341–348, 2023, doi: 10.17762/ijritcc.v11i4.6458.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alfin Nur Aziz Saputra, Rujianto Eko Saputro, Dhanar Intan Surya Saputra

This work is licensed under a Creative Commons Attribution 4.0 International License.





