COMPARISON OF LOGISTIC REGRESSION AND RANDOM FOREST IN SENTIMENT ANALYSIS OF DISDUKCAPIL APPLICATION REVIEWS
Abstract
Civil registration administration institutions such as Disdukcapil have an important role in carrying out government functions, in supporting the smooth running of administrative services the Government presents the Disdukcapil Mobile Application platform which aims to provide efficient and fast services to the community regarding various population administration needs. Sentiment analysis of user reviews on the Play Store for the Disdukcapil application is needed to understand user perceptions and needs, as well as to improve service quality and application development. In this study, researchers conducted sentiment analysis using 2 algorithms, namely: Logistic Regression and Random Forest, which after comparing by testing the two algorithms with test data of 18810 user review data from PlayStore, obtained the performance results of each algorithm as follows: 90% accuracy, 91% precision, 89% recall, and f1 90% for the performance results of the Logistic Regression algorithm, while for the performance results of the Random Forest algorithm accuracy 89%, precision 92%, recall 86% and f1-score 89%. From these results the Logical Regression algorithm has better performance than the Random Forest algorithm.
Downloads
References
M. T. Santiago and A. B. Marques, “Are user reviews useful for identifying accessibility issues that autistic users face?,” in Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems, New York, NY, USA: ACM, Oct. 2022, pp. 1–11. doi: 10.1145/3554364.3559114.
D. Varma, A. Nehansh, and P. Swathy, “Data Preprocessing Toolkit : An Approach to Automate Data Preprocessing,” INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, vol. 07, no. 03, Mar. 2023, doi: 10.55041/IJSREM18270.
F. S. A. and F. N. Hasan, “Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store,” Jurnal ICT : Information Communication & Technology, vol. 1, pp. 75–80, 2023.
M. Huber, M. Nöllenburg, and A. Villedieu, “MySemCloud: Semantic-aware Word Cloud Editing,” in 2023 IEEE 16th Pacific Visualization Symposium (PacificVis), IEEE, Apr. 2023, pp. 147–156. doi: 10.1109/PacificVis56936.2023.00024.
R. Friedman, “Tokenization in the Theory of Knowledge,” Encyclopedia, vol. 3, no. 1, pp. 380–386, Mar. 2023, doi: 10.3390/encyclopedia3010024.
B. Bakiyev, “Method for Determining the Similarity of Text Documents for the Kazakh language, Taking Into Account Synonyms: Extension to TF-IDF,” in 2022 International Conference on Smart Information Systems and Technologies (SIST), IEEE, Apr. 2022, pp. 1–6. doi: 10.1109/SIST54437.2022.9945747.
R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” Jurnal Informatika, vol. 8, no. 2, pp. 200–207, Sep. 2021, doi: 10.31294/ji.v8i2.9681.
J. Muliawan and E. Dazki, “SENTIMENT ANALYSIS OF INDONESIA’S CAPITAL CITY RELOCATION USING THREE ALGORITHMS: NAÏVE BAYES, KNN, AND RANDOM FOREST,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 5, pp. 1227–1236, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.1436.
F. Li, Y. Zhou, and T. Cai, “Trails of Data: Three Cases for Collecting Web Information for Social Science Research,” Soc Sci Comput Rev, vol. 39, no. 5, pp. 922–942, Oct. 2021, doi: 10.1177/0894439319886019.
S. Wahyu Handani, D. Intan Surya Saputra, Hasirun, R. Mega Arino, and G. Fiza Asyrofi Ramadhan, “Sentiment Analysis for Go-Jek on Google Play Store,” J Phys Conf Ser, vol. 1196, p. 012032, Mar. 2019, doi: 10.1088/1742-6596/1196/1/012032.
and A. P. Andreas Nugroho Sihananto, Eristya Maya Safitri, Arif Widiasan Subagio, Muhammad Dafa Ardiansyah, “Classification o f Covid - 19 RT - PCR Test Results Using Auto - encoder And Random Forest,” Nusantara Science and Technology Proceedings, vol. 2023, pp. 237–243, 2023.
and V. E. D. Yohana Ruth Wulan Natalia Susanto, Aisyah Larasati, “The Sentiment Analysis of User Perception on The Peduli Lindungi Application Using Support Vector Machine Algorithm,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, Michigan, USA: IEOM Society International, 2022, pp. 832–842. doi: 10.46254/AP03.20220165.
L. Septiani and Y. Sibaroni, “Sentiment Analysis Terhadap Tweet Bernada Sarkasme Berbahasa Indonesia,” Jurnal Linguistik Komputasional (JLK), vol. 2, no. 2, p. 62, Sep. 2019, doi: 10.26418/jlk.v2i2.23.
and B. T. H. Fanka Angelina Larasati, Dian Eka Ratnawati, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, pp. 4305–4313, 2022.
E. S. Alamoudi and S. Al Azwari, “Exploratory Data Analysis and Data Mining on Yelp Restaurant Review,” in 2021 National Computing Colleges Conference (NCCC), IEEE, Mar. 2021, pp. 1–6. doi: 10.1109/NCCC49330.2021.9428850.
T. Hanika and J. Hirth, “Conceptual views on tree ensemble classifiers,” International Journal of Approximate Reasoning, vol. 159, p. 108930, Aug. 2023, doi: 10.1016/j.ijar.2023.108930.
A. R. Isnain, H. Sulistiani, B. M. Hurohman, A. Nurkholis, and S. Styawati, “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 8, no. 2, p. 299, Aug. 2022, doi: 10.26418/jp.v8i2.54704.
and S. K. Boma Bayu Baskoro, Irwan Susanto, “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” INISTA, vol. 3, pp. 21–29, 2021.
J. Wieczorek, C. Guerin, and T. McMahon, “K ‐fold cross‐validation for complex sample surveys,” Stat, vol. 11, no. 1, Dec. 2022, doi: 10.1002/sta4.454.
F. Hassan et al., “Performance evolution for sentiment classification using machine learning algorithm,” Journal of Applied Research in Technology & Engineering, vol. 4, no. 2, pp. 97–110, May 2023, doi: 10.4995/jarte.2023.19306.
W. Sofiya and E. B. Setiawan, “FINE-GRAINED SENTIMENT ANALYSIS IN SOCIAL MEDIA USING GATED RECURRENT UNIT WITH SUPPORT VECTOR MACHINE,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 3, pp. 511–519, Jun. 2023, doi: 10.52436/1.jutif.2023.4.3.855.
Copyright (c) 2024 Haris Junianto

This work is licensed under a Creative Commons Attribution 4.0 International License.