IMPLEMENTATION OF YOU ONLY LOOK ONCE V8 ALGORITHM IN POTATO LEAF DISEASE DETECTION SYSTEM
Abstract
Agriculture is an important foundation of the national economy, as effective development in this sector will support overall economic stability. Potato itself is one of the world's staple foods after rice, wheat and corn. This crop belongs to the category of horticulture which is widely planted and developed by people to meet their needs. On the farm of Bibit sida kangen Kalibening, Banjarnegara which is one of the farms that grow potatoes has constraints related to potato diseases which result in decreased productivity of crops. Therefore, the main purpose of this system is to provide fast and accurate disease detection capability on the farm of Bibit sida kangen Kalibening, Banjarnegara, so that it can help farmers in reducing losses caused by disease attacks on plants. By utilizing YOU ONLY LOOK ONCE V8 (YOLOv8) technology, this system can recognize and classify potato leaf disease types, including early_blight, late_blight, and healthy plants, with a high level of accuracy. Through evaluation using precision and recall matrices, the results show a significant success rate, with precision accuracy for early_blight of 87%, healthy plants of 81%, and late_blight of 97%, respectively. Meanwhile, the recall results for the three categories also reached 87%, 81%, and 97% respectively. With an overall accuracy of 88%, these findings confirm that the developed detection system is successful in identifying potato leaf diseases with high accuracy. This indicates the great potential of this system in assisting farmers in managing the condition of their potato crops, which in turn can improve farmers' productivity and welfare.
Downloads
References
R. D. Puspitasari, “Pertanian Berkelanjutan Berbasis Revolusi Industri 4.0,” J. Layanan Masy. (Journal Public Serv., vol. 3, no. 1, p. 26, 2020, doi: 10.20473/jlm.v3i1.2019.26-28.
M. Azis and E. A. Suryana, “KOMPARASI DAN IMPLEMENTASI KEBIJAKAN DIGITALISASI PERTANIAN: PELUANG DAN TANTANGAN,” Risal. Kebijak. Pertan. DAN Lingkung. Rumusan Kaji. Strateg. Bid. Pertan. dan Lingkung., vol. 10, no. 3, pp. 179–198, Dec. 2023, doi: 10.29244/jkebijakan.v10i3.51083.
M. Wali et al., Penerapan & Implementasi Big Data di Berbagai Sektor (Pembangunan Berkalanjutan Era Industri 4.0 dan Sosiety 5.0). 2023.
N. M. S. Ayomi, B. M. Setiawan, and W. Roessali, “ANALISIS FLUKTUASI DAN ELASTISITAS TRANSMISI HARGA KENTANG DI KABUPATEN MAGELANG,” J. Litbang Provinsi Jawa Teng., vol. 18, no. 2, pp. 159–166, Dec. 2020, doi: 10.36762/jurnaljateng.v18i2.828.
A. M. Lesmana, R. P. Fadhillah, and C. Rozikin, “Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN),” J. Sains dan Inform., vol. 8, no. 1, pp. 21–30, Jun. 2022, doi: 10.34128/jsi.v8i1.377.
L. Aumatullah, I. Ein, and M. M. Santoni, “Identifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur dan Warna Dengan Menggunakan Metode K-Nearest Neighbor,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., no. April, pp. 783–791, 2021.
kompas, “Penurunan Produksi Kentang di Dieng.” [Online]. Available: https://www.kompasiana.com/15lusiariaxiimipa25402/6381a6a934b898219a257c54/penurunan-produksi-kentang-di-dieng.2022
M. Kevin Santosa, M. Hanindia Prami Swari, and A. Nugroho Sihananto, “IMPLEMENTASI ARSITEKTUR ALEXNET DAN RESNET34 PADA KLASIFIKASI CITRA PENYAKIT DAUN KENTANG MENGGUNKAN TRANSFER LEARNING,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, pp. 3293–3301, Jan. 2024, doi: 10.36040/jati.v7i5.7337.
K. I. Nauval and S. Lestari, “Implementasi Deteksi Objek Penyakit Daun Kentang dengan Metode Convolutional Neutral Network,” J. Apl. Teknol. Inf. dan Manaj., vol. 3, no. 2, pp. 136–149, Nov. 2022, doi: 10.31102/jatim.v3i2.1576.
M. Masparudin, I. Fitri, and S. Sumijan, “Development of Apple Fruit Classification System using Convolutional Neural Network (CNN) MobileNet Architecture on Android Platform,” SISTEMASI, vol. 13, no. 1, p. 230, Jan. 2024, doi: 10.32520/stmsi.v13i1.3533.
S. Abbasi, H. Abdi, and A. Ahmadi, “A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset,” in 2021 26th International Computer Conference, Computer Society of Iran (CSICC), IEEE, Mar. 2021, pp. 1–6. doi: 10.1109/CSICC52343.2021.9420599.
M. I. Mauladany, B. Fatkhurrozi, and R. A. Wibowo, “Deteksi Penyakit Daun Durian dengan Algoritma YOLO (You Only Look Once),” AVITEC, vol. 6, no. 1, p. 73, Feb. 2024, doi: 10.28989/avitec.v6i1.2067.
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” Procedia Comput. Sci., vol. 199, pp. 1066–1073, 2022, doi: 10.1016/j.procs.2022.01.135.
M. P. Mathew and T. Y. Mahesh, “Leaf-based disease detection in bell pepper plant using YOLO v5,” Signal, Image Video Process., vol. 16, no. 3, pp. 841–847, Apr. 2022, doi: 10.1007/s11760-021-02024-y.
R. Rajamohanan and B. C. Latha, “An Optimized YOLO v5 Model for Tomato Leaf Disease Classification with Field Dataset,” Eng. Technol. Appl. Sci. Res., vol. 13, no. 6, pp. 12033–12038, Dec. 2023, doi: 10.48084/etasr.6377.
M. K. R. Asif, M. A. Rahman, and M. H. Hena, “CNN based Disease Detection Approach on Potato Leaves,” in 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), IEEE, Dec. 2020, pp. 428–432. doi: 10.1109/ICISS49785.2020.9316021.
R. Raj, S. S. Nagaraj, S. Ritesh, T. A. Thushar, and V. M. Aparanji, “Fruit Classification Comparison Based on CNN and YOLO,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1187, no. 1, p. 012031, Sep. 2021, doi: 10.1088/1757-899X/1187/1/012031.
S. Shahriar, S. Allana, S. M. Hazratifard, and R. Dara, “A Survey of Privacy Risks and Mitigation Strategies in the Artificial Intelligence Life Cycle,” IEEE Access, vol. 11, pp. 61829–61854, 2023, doi: 10.1109/ACCESS.2023.3287195.
Suhartono, A. Ardilla, and Satria Gunawan, “Detection of Vehicle Type And License Plate With Convolutional Neural Network Model YOLOv7,” J. Tek. Inform., vol. x, No. y, no. 2, pp. x-y, 2023.
D. S. Park et al., “Improved Noisy Student Training for Automatic Speech Recognition,” in Interspeech 2020, ISCA: ISCA, Oct. 2020, pp. 2817–2821. doi: 10.21437/Interspeech.2020-1470.
S. G. E. Brucal, L. C. M. de Jesus, S. R. Peruda, L. A. Samaniego, and E. D. Yong, “Development of Tomato Leaf Disease Detection using YoloV8 Model via RoboFlow 2.0,” in 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), IEEE, Oct. 2023, pp. 692–694. doi: 10.1109/GCCE59613.2023.10315251.
R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.
S. Khalid, M. Goldenberg, T. Grantcharov, B. Taati, and F. Rudzicz, “Evaluation of Deep Learning Models for Identifying Surgical Actions and Measuring Performance,” JAMA Netw. Open, vol. 3, no. 3, p. e201664, Mar. 2020, doi: 10.1001/jamanetworkopen.2020.1664.
A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, and J. Mendling, “Monotone Precision and Recall Measures for Comparing Executions and Specifications of Dynamic Systems,” ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, pp. 1–41, Jul. 2020, doi: 10.1145/3387909.
A. Aboah, B. Wang, U. Bagci, and Y. Adu-Gyamfi, “Real-time Multi-Class Helmet Violation Detection Using Few-Shot Data Sampling Technique and YOLOv8,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jun. 2023, pp. 5350–5358. doi: 10.1109/CVPRW59228.2023.00564.
Copyright (c) 2024 Bagus kurniawan Ekhsanto, Bagus Adhi Kusuma, Adam Prayogo Kuncoro
This work is licensed under a Creative Commons Attribution 4.0 International License.