IMPLEMENTATION OF TEXT MINING ON SONG LYRICS FOR SONG CLASSIFICATION BASED ON EMOTION USING WEBSITE-BASED LOGISTIC REGRESSION

  • Swahesti Puspita Rahayu Informatics, Engineering Faculty, Universitas Jenderal Soedirman, Indonesia
  • Lasmedi Afuan Informatics, Engineering Faculty, Universitas Jenderal Soedirman, Indonesia
  • Galih Arditiya Yunindar Informatics, Engineering Faculty, Universitas Jenderal Soedirman, Indonesia
Keywords: Emotion, Logistic Regression, Text Mining, TF-IDF

Abstract

Music has become an essential medium for expressing emotions and enriching human social experiences. However, the manual interpretation of emotions in song lyrics is often inaccurate and time-consuming, especially for complex or ambiguous lyrics. This creates a need for an automated system that can improve the accuracy and efficiency of emotion classification in song lyrics. Various algorithms, such as K-Nearest Neighbor (K-NN), Naive Bayes Classifier, and Support Vector Machine (SVM), have been applied for emotion classification in song lyrics. Previous research has shown that SVM combined with Particle Swarm Optimization (PSO) achieves an accuracy of up to 90%, while K-NN with feature selection produces the highest f-measure of 66.93%, and Naive Bayes achieves an accuracy of up to 45%. In this study, the Logistic Regression algorithm, supported by the Term Frequency-Inverse Document Frequency (TF-IDF) method, is applied to enhance the accuracy of emotion classification. Evaluation results indicate that the model with figurative language transformation achieves a higher accuracy (93.52%) compared to the model without figurative language transformation (92.31%), demonstrating that figurative language contributes to the richness of emotional expression recognized by the model. This model shows competitive results and can be compared to SVM using PSO while providing better performance than K-NN and Naive Bayes. The system implementation is web-based using the Streamlit framework, allowing users to input lyrics and obtain interactive emotion predictions. This research contributes to the analysis of music emotions and offers an efficient and more accessible alternative for emotion classification in song lyrics.

Downloads

Download data is not yet available.

References

F. Novriadi, F. Mayar, and Desyandri, “Memperkenalkan Drama Musikal Untuk Membangun Kreativitas,” Journal Of Social Science Research, vol. 3, pp. 5757–5768, 2023, [Online]. Available: https://j-innovative.org/index.php/Innovative

D. Setiaji, “Naturalistic: Jurnal Kajian Penelitian dan Pendidikan dan Pembelajaran,” Naturalistic: Jurnal Kajian Penelitian dan Pendidikan dan Pembelajaran, vol. 5, no. 1, pp. 692–697, 2020, [Online]. Available: https://doi.org/10.35568/naturalistic.v5i1.909

P. N. Juslin and J. Sloboda, Handbook of music and emotion: Theory, research, applications. Oxford University Press, 2011. [Online]. Available: https://books.google.co.id/books?id=ZtwUDAAAQBAJ

S. I. A. Cahya and G. G. Sukendro, “Musik sebagai Media Komunikasi Ekspresi Cinta (Analisis Semiotika Lirik Lagu ‘Rumah ke Rumah’ Karya Hindia),” Koneksi, vol. 6, no. 2, pp. 246–254, 2022, [Online]. Available: https://doi.org/10.24912/kn.v6i2.15565

B. Nushantari, “Metafora Kematian Pada Antologi Puisi Nur Ein Duft Und Windeswehen,” Journal Universitas Negeri Surabaya, vol. 9, no. 2, 2020, [Online]. Available: https://doi.org/10.26740/ide.v9n2.p%25p

D. Edmonds and J. Sedoc, “Multi-Emotion Classification for Song Lyrics,” Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 221–235, Apr. 2021, [Online]. Available: https://aclanthology.org/2021.wassa-1.24

L. Afuan, M. Khanza, and A. Z. Hasyati, “Enhancing Sentiment Analysis Of The 2024 Indonesian Presidential Inauguration On X Using Smote-Optimized Naive Bayes Classifier,” Jurnal Teknik Informatika (JUTIF), vol. 6, no. 1, pp. 325–333, 2025, doi: 10.52436/1.jutif.2025.6.1.4290.

L. Afuan and R. R. Isnanto, “Enhanced Fall Detection using Optimized Random Forest Classifier on Wearable Sensor Data,” Journal of Applied Data Sciences, vol. 6, no. 1, pp. 213–224, 2024, doi: 10.47738/jads.v6i1.498.

R. E. Fitri, “Analisis Regresi Logistik Biner Terhadap Data Indeks Kedalaman Kemiskinan Di Indonesia Tahun 2020,” Fakultas Matematika Dan Ilmu Pengetahuan Alam, 2022, [Online]. Available: http://digilib.unila.ac.id/63363/

B. Ramadhani, R. R. Suryono, and K. Kunci, “JURNAL MEDIA INFORMATIKA BUDIDARMA Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse,” 2024, doi: 10.30865/mib.v8i2.7458.

Y. T. Handika, S. Defit, and G. W. Nurcahyo, “Text Mining Dalam Membandingkan Metode Naïve Bayes Dengan C.45 Dalam Mengidentifikasi Berita Hoax Pada Media Sosial,” Rang Teknik Journal, vol. 5, no. 1, pp. 116–123, Jan. 2022, doi: 10.31869/rtj.v5i1.2855.

A. Mustofa and R. Novita, “Klasifikasi Sentimen Masyarakat Terhadap Pemberlakuan Pembatasan Kegiatan Masyarakat Menggunakan Text Mining Pada Twitter,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, Jun. 2022, doi: 10.47065/bits.v4i1.1628.

N. C. Ramadani, “Analisis Sentimen Untuk Mengukur Ulasan Pengguna Aplikasi Mobile Legend Menggunakan Algoritma Naive Bayes, SVM, Random Fores, Decision Tree, dan Logistic Regression,” JSI : Jurnal Sistem Informasi (E-Journal, vol. 16, no. 1, pp. 123–138, 2024, [Online]. Available: https://doi.org/10.18495/jsi.v16i1.152

N. Silalahi and G. L. Ginting, “Rekomendasi Berita Berkaitan dengan Menerapkan Algoritma Text Mining dan TF-IDF,” Bulletin of Computer Science Research, vol. 3, no. 4, pp. 276–282, Jun. 2023, doi: 10.47065/bulletincsr.v3i4.266.

W. Hermanto, B. Irawan, and C. Setianingsih, “Klasifikasi Emosi Pada Lirik Lagu Menggunakan Algoritma Support Vector Machine Dan Optimasi Particle Swarm Optimization Classification Of Emotions In Song Lyrics Using Support Vector Machine Algorithm And Particle Swarm Optimization,” 2021. [Online]. Available: https://lirik.kapanlagi.com/

N. Hikmah, D. Ariyanti, and F. A. Pratama, “Implementasi Chatbot Sebagai Virtual Assistant di Universitas Panca Marga Probolinggo menggunakan Metode TF-IDF,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 4, no. 2, pp. 133–148, Aug. 2022, doi: 10.35746/jtim.v4i2.225.

H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” Media Online), vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.

T. Ridwansyah, “KLIK: Kajian Ilmiah Informatika dan Komputer Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” Media Online, vol. 2, no. 5, pp. 178–185, 2022, [Online]. Available: https://djournals.com/klik

R. Rosdani and R. R. Waliansyah, “Sistem Informasi Pendataan Mahasiswa Magang Di Upt-Tik Universitas Pgri Semarang,” in Proceeding Science and Engineering National Seminar, 2020, pp. 66–71. [Online]. Available: https://conference.upgris.ac.id/index.php/sens/article/view/1324

A. Yusnita, E. Yulsilviana, and D. Sulissetiyo, “Sistem Informasi Pendataan Siswa Tidak Mampu Dan Putus Sekolah Pada Dinas Pendidikan Dan Kebudayaan Provinsi Kalimantan Timur Berbasis Web,” Jurnal Informatika Wicida, vol. 8, no. 2, pp. 60–68, 2019, [Online]. Available: https://jurnal.wicida.ac.id/index.php/informatika/article/view/1229

T. Anjani, I. Mutia, and others, “Perancangan Aplikasi Peminjaman Buku Perpustakaan Pada SDN Mekarjaya 11 Depok,” STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), vol. 5, no. 1, pp. 101–107, 2020, [Online]. Available: https://www.academia.edu/download/68167767/3248.pdf

J. Jamaludin and R. Romindo, “Sistem Informasi Akademik Berbasis Web Menggunakan Metode Waterfall Pada SMA Kemala Bhayangkari I Medan,” in Semantika (Seminar Nasional Teknik Informatika), 2019, pp. 17–27. [Online]. Available: https://semantika.polgan.ac.id/index.php/Semantika/article/view/54

I. M. S. Ardana, “Pengujian Software Menggunakan Metode Boundary Value Analysis dan Decision Table Testing,” Jurnal Teknologi Informasi ESIT, vol. 14, no. 11, 2019, Accessed: Nov. 02, 2024. [Online]. Available: https://www.researchgate.net/

D. Rahmawati, A. S. Prabowo, and R. Purwanto, “Implementasi Model Waterfall pada Pengembangan Sistem Informasi Monitoring Prestasi Mahasiswa,” Journal of Innovation Information Technology and Application (JINITA), vol. 3, no. 1, pp. 82–93, Jun. 2021, doi: 10.35970/jinita.v3i1.678.

N. Hasanah and M. Nahrul Indriawan, “Rancangan Aplikasi Batam Travel Menggunakan Metode Software Development Life Cycle (SDLC),” Conference On Management Business, Innovation, Education and Social Sciences, vol. 1, no. 1, p. 925, 2021, [Online]. Available: https://journal.uib.ac.id/index.php/combines.

Published
2025-02-15
How to Cite
[1]
S. P. Rahayu, L. Afuan, and G. A. Yunindar, “IMPLEMENTATION OF TEXT MINING ON SONG LYRICS FOR SONG CLASSIFICATION BASED ON EMOTION USING WEBSITE-BASED LOGISTIC REGRESSION”, J. Tek. Inform. (JUTIF), vol. 6, no. 1, pp. 359-368, Feb. 2025.

Most read articles by the same author(s)